8. (i) (a-b). $\mathbf{r}=\frac{1}{2}\left(|\mathbf{a}|^{2}-|\mathbf{b}|^{2}\right)=\frac{1}{2}\left(a^{2}-b^{2}\right)=\frac{1}{2}(\mathbf{a}+\mathbf{b}) .(\mathbf{a}-\mathbf{b})$
i.e. $(\mathbf{a}-\mathbf{b}) .\left(\mathbf{r}-\frac{1}{2}(\mathbf{a}+\mathbf{b})\right)=0$ which is the equation of a plane perpendicular to ( $\mathbf{a}-\mathbf{b}$ ) through the point $\frac{1}{2}(a+b)$.
(ii) $(\mathbf{a}-\mathbf{r}) \cdot(\mathbf{b}-\mathbf{r})=0 \Rightarrow \mathrm{r}^{2}-(\mathbf{a}+\mathbf{b}) \cdot \mathbf{r}+\mathbf{a} \cdot \mathbf{b}=0 \Rightarrow\left|\mathbf{r}-\frac{1}{2}(\mathbf{a}+\mathbf{b})\right|^{2}=\frac{1}{4}|\mathbf{a}-\mathbf{b}|^{2}$ which is the equation of a sphere of radius $\frac{1}{2}|\mathbf{a}-\mathbf{b}|$ and centre $\frac{1}{2}(\mathbf{a}+\mathbf{b})$
(iii) and (iv) describe spheres, each with radius $\frac{1}{\sqrt{2}}|\mathbf{a}-\mathbf{b}|$ and centres $\mathbf{a}$ and $\mathbf{b}$ respectively.
(i) and (ii) $\Rightarrow$ (iv) :
expanding (i) $\mathbf{a} \mathbf{r}=\mathbf{b} \cdot \mathbf{r}+\frac{1}{2}\left(\mathrm{a}^{2}-\mathrm{b}^{2}\right)$
expanding (ii) a.r=a.b+r $r^{2}-\mathbf{b} \cdot \mathbf{r}$
hence, $a \cdot b+r^{2}-b \cdot r=b \cdot r+\frac{1}{2}\left(a^{2}-b^{2}\right) \Rightarrow r^{2}-2 b \cdot r-\frac{1}{2}\left(a^{2}-b^{2}\right)+a \cdot b=0$ which is the expansion of (iv) eliminating $\mathbf{b} . \mathbf{r}$ instead of a.r gives (iii)
(iii) and (iv) $\Rightarrow$ (i):
subtracting (iv) from(iii) $|\mathbf{r}-\mathbf{a}|^{2}-|\mathbf{r}-\mathbf{b}|^{2}=0 \Rightarrow a^{2}-2 a \cdot \mathbf{r}-b^{2}+2 \mathbf{b} \cdot \mathbf{r}=0 \Rightarrow 2(\mathbf{b}-\mathbf{a}) \cdot \mathbf{r}=\mathrm{b}^{2}-\mathrm{a}^{2}$ which is equivalent to (i) and finally
(iii) and (iv) $\Rightarrow$ (ii)
adding (iii) and (iv) $|\mathbf{r}-\mathbf{a}|^{2}+|\mathbf{r}-\mathbf{b}|^{2}=|\mathbf{a}-\mathbf{b}|^{2} \Rightarrow 2 r^{2}-2 \mathbf{a} \cdot \mathbf{r}-2 \mathbf{b} \cdot \mathbf{r}=-2 \mathbf{a} \cdot \mathbf{b}$
$\Rightarrow(\mathbf{a}-\mathbf{r}) .(\mathbf{b}-\mathbf{r})=0$ which is (ii)
Geometrically, the points sastisfying (iii) and (iv) lie on the intersectionof two spheres, i.e. a circle centre $\frac{1}{2}(\mathbf{a}+\mathbf{b})$ whose plane is perpendicular to the line joining their centres i.e $a-b$ with a radius (seediagram)
$\sqrt{\frac{1}{2}|\mathbf{a}-\mathbf{b}|^{2}-\frac{1}{4}|\mathbf{a}-\mathbf{b}|^{2}}=\frac{1}{2}|\mathbf{a}-\mathbf{b}|$
points satisfying (i) and (ii) formthe intersection of the plane perpendicular to ( $\mathbf{a}-\mathbf{b}$ ) through the point $\frac{1}{2}(\mathbf{a}+\mathbf{b})$ with the sphere of radius $\frac{1}{2}|\mathbf{a}-\mathbf{b}|$ and centre $\frac{1}{2}(\mathbf{a}+\mathbf{b})$ i.e. The same circle as above.

So the geometric meaning of the equivalence is that it is the two ways of defining a circle as the intersection of two sheres or the intersection of a sphere and a plane.


