9. $\mathbf{B}=(\mathbf{I}+\mathbf{A})(\mathbf{I}-\mathbf{A})^{-1} \Rightarrow \mathbf{B}^{\mathbf{T}}=\left((\mathbf{I}-\mathbf{A})^{-1}\right)^{\mathbf{T}}(\mathbf{I}+\mathbf{A})^{\mathbf{T}}=\left(\mathbf{I}-\mathbf{A}^{\mathbf{T}}\right)^{-1}(\mathbf{I}+\mathbf{A})^{\mathbf{T}}\left[\left(\mathbf{A}^{-1}\right)^{\mathbf{T}}=\left(\mathbf{A}^{\mathbf{T}}\right)^{-\mathbf{1}}\right]$ hence, $\mathbf{B}^{\mathbf{T}} \mathbf{B}=\left(\mathbf{I}-\mathbf{A}^{\mathbf{T}}\right)^{-1}(\mathbf{I}+\mathbf{A})^{\mathbf{T}}(\mathbf{I}+\mathbf{A})(\mathbf{I}-\mathbf{A})^{-1}=1 \mathrm{iff}$
$(\mathbf{I}+\mathbf{A})^{\mathbf{T}}(\mathbf{I}+\mathbf{A})=\left(\mathbf{I}-\mathbf{A}^{\mathbf{T}}\right)(\mathbf{I}-\mathbf{A})$ by pre and post multiplying by inverses
i.e. iff $\left(\mathbf{I}+\mathbf{A}^{\mathbf{T}}\right)(\mathbf{I}+\mathbf{A})=\left(\mathbf{I}-\mathbf{A}^{\mathbf{T}}\right)(\mathbf{I}-\mathbf{A})$ expanding gives $\mathbf{I}+\mathbf{A}+\mathbf{A}^{\mathbf{T}}+\mathbf{A}^{\mathbf{T}} \mathbf{A}=\mathbf{I}-\mathbf{A}-\mathbf{A}^{\mathbf{T}}+\mathbf{A}^{\mathbf{T}} \mathbf{A}$ $\Rightarrow A+A^{\mathbf{T}}=-\mathbf{A}-\mathbf{A}^{\mathbf{T}} \Rightarrow 2\left(\mathbf{A}+\mathbf{A}^{\mathbf{T}}\right)=0$ or $\mathbf{A}+\mathbf{A}^{\mathbf{T}}=0$ as required.
