10. $a_{j} o a_{k}=a m$ where $a m$ is the greater of a_{j} and a_{k}
since a_{j} and a_{k} areelements of S and $a m=a_{j}$ or a_{k} then the operation is closed
the smallest element of S is an identity element, for suppose it is a_{1} then for any $k, a_{1} o a_{k}=a_{k}$ but no element other than the identity has an inverse since $a_{j} o a_{k} \neq a_{1}$ for any $j, k(\neq 1)$
$\left(a_{j} \circ a_{k}\right)$ o $a_{l}=$ (larger of $\left.a_{j}, a_{k}\right)$ o $a_{l}=$ largest of a_{j}, a_{k}, a_{l}
$a_{j} \circ\left(a_{k} \circ a_{l}\right)=a_{j} \circ$ (larger of $\left.a_{k}, a_{\jmath}\right)=$ largest of a_{j}, a_{k}, a_{ρ} so associative
$a_{j} * a_{k}=a_{n}$ where $n=|j-k|+1$
if a_{j} and a_{k} areelemts of S then $0 \leq|\mathrm{j}-\mathrm{k}| \leq \mathrm{N}-1$ so $1 \leq|j-k|+1 \leq N$ so an \in S closed
a_{1} is an identity dement since $a_{1} * a_{j}=a n \Rightarrow n=|j-1|+1=j$
$a_{j} * a_{k}=a_{1}$ iff $|j-k|+1=1$ so every element is self inverse
$\operatorname{Let}\left(a_{j} * a_{k}\right) * a_{I}=\operatorname{an}$ and $a_{j} *\left(a_{k} * a_{l}\right)=a m$
If $\mathrm{j}=2, \mathrm{k}=3, \mathrm{I}=4$ then $\mathrm{n}=3$ and $\mathrm{m}=1$ so not associative.
