UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH1101

ASSESSMENT : MATH1101A PATTERN

MODULE NAME : Analysis 1
DATE
20-May-11

TIME : 14:30

TIME ALLOWED : 2 Hours 0 Minutes

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) State what it means for a real sequence to converge.
(b) Use the definition of convergence (not the combination theorem or any other theorems) to prove that

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+1}{2+3 n^{2}}=\frac{1}{3}
$$

(c) State what it means for a real sequence to be a Cauchy sequence.
(d) Use the definition (not a theorem) to show that the sequence $\left\langle a_{n}\right\rangle$ given by

$$
a_{n}=\frac{1}{n}
$$

is a Cauchy sequence.
(e) Prove that every convergent sequence of reals is a Cauchy sequence.
2. (a) State the definition of $\lim _{x \rightarrow a^{+}} f(x)=l$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by

$$
f(x)=\left\{\begin{array}{cc}
x^{2}-3, & (x<2) \\
6 / x, & (x \geq 2)
\end{array}\right.
$$

Show carefully (using ϵ and δ) that

$$
\lim _{x \rightarrow 2^{-}} f(x)=1, \quad \lim _{x \rightarrow 2^{+}} f(x)=3
$$

(c) Let f be continuous on the compact interval $[a, b]$. Show that f is bounded on [a,b].
(d) Can you apply the theorem in (c) to the function f in (b) on the interval $[0,5]$? Determine (with explanation) whether the function f is bounded on $[0,5]$ or not.
3. (a) State and prove the sandwich theorem for sequences.
(b) Show that $\lim _{n \rightarrow \infty} \sqrt[n]{3^{n}+5^{n}}=5$.
(Hint: You may assume that $\lim _{n \rightarrow \infty} \sqrt[n]{a}=1$ for $a>0$.)
(c) Define what it means for the series $\sum_{n=1}^{\infty} a_{n}$ to converge.
(d) Determine with explanations whether the following series converge or diverge.

$$
\sum_{n=1}^{\infty} n^{3}\left(\frac{1}{2}\right)^{n}, \quad \sum_{n=1}^{\infty} \sqrt[n]{3^{n}+5^{n}}
$$

4. (a) (i) State the Cauchy-Schwarz inequality.
(ii) Let $x_{1}, x_{2}, \ldots, x_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$ be positive numbers with $\sum_{j=1}^{n} w_{j}^{2}=1$. Use the Cauchy-Schwarz inequality to show that

$$
\left(\sum_{j=1}^{n} x_{j} \cdot w_{j}^{2}\right)^{2} \leq \sum_{j=1}^{n}\left(x_{j}^{2} \cdot w_{j}^{2}\right)
$$

(iii) If the series $\sum_{n=1}^{\infty} a_{n}^{2}$ converges, show that the series

$$
\sum_{n=1}^{\infty} \frac{a_{n}}{n^{3 / 2}}
$$

converges absolutely.
(b) State and prove the Bolzano-Weierstrass Theorem. You may assume that every sequence of reals has a monotone subsequence.
5. (a) State the Intermediate Value Theorem.
(b) Let $f:[0,1] \rightarrow[0,1]$ be continuous on $[0,1]$.

Prove that for some $\xi \in[0,1]$ we have $f(\xi)=\xi$.
(c) Let y be positive. Using the function $f(x)=x^{2}$, show that y has a square root.
(d) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function for which

$$
(f(x))^{2}-x^{2}=1, \quad \forall x \in \mathbb{R}
$$

and $f(0)=-1$. Show that

$$
f(x)=-\sqrt{1+x^{2}}, \quad \forall x \in \mathbb{R}
$$

6. (a) (i) Show that for all positive numbers y we have

$$
\ln (y) \leq y-1
$$

You may assume that $e^{x} \geq x+1$ for all $x \in \mathbb{R}$.
(ii) State and prove the Arithmetic Mean - Geometric Mean Inequality for n nonnegative numbers $a_{1}, a_{2}, \ldots, a_{n}$. You may use (i).
(b) (i) For $0<x<y$ prove the following inequalities

$$
x<\frac{2}{\frac{1}{x}+\frac{1}{y}}<\sqrt{x y}<y .
$$

(ii) Define the sequence $\left\langle x_{n}\right\rangle$ by

$$
x_{1}=1 / 2, \quad x_{2} \doteq 1, \quad x_{2 n+1}=\sqrt{x_{2 n} x_{2 n-1}}, \quad x_{2 n+2}=\frac{2}{\frac{1}{x_{2 n}}+\frac{1}{x_{2 n+1}}}, \quad n \geq 1 .
$$

Use induction and (i) to prove that

$$
x_{2 n-1}<x_{2 n+1}<x_{2 n+2}<x_{2 n}, \quad n \in \mathbb{N}
$$

Deduce that the subsequences given by $\left\langle x_{2 n}\right\rangle$ and $\left\langle x_{2 n-1}\right\rangle$ converge to the same limit. What does this imply for the sequence $\left\langle x_{n}\right\rangle$?

