UNIVERSITY COLLEGE LONDON

EXAMINATION FOR INTERNAL STUDENTS

MODULE CODE : MATH1401
ASSESSMENT : MATH1401APATTERN
MODULE NAME : Mathematical Methods 1
DATE : 11-May-11
TIME : 14:30
TIME ALLOWED : 2 Hours 0 Minutes

All questions may be attempted but only marks obtained on the best four solutions will count.
The use of an electronic calculator is not permitted in this examination.

1. (a) The equation of a plane is $r=a+\lambda b+\mu c$. Show that this is equivalent to

$$
(r-a) \cdot n=0
$$

for some \mathbf{n} which you should determine.
(b) Show that the minimum distance between the two lines $\mathbf{r}=\mathrm{a}_{1}+\lambda \mathrm{b}_{1}$ and $\mathrm{r}=\mathrm{a}_{2}+\mu \mathrm{b}_{2}$ is given by

$$
\left|\frac{\left(a_{1}-a_{2}\right) \cdot\left(b_{1} \wedge b_{2}\right)}{\left|b_{1} \wedge b_{2}\right|}\right| .
$$

(c) Show that the point $(0,0,1)$ lies in both of the planes $x+y+z=1$ and $x-y+2 z=2$ and that the minimum distance between the x-axis and the line of intersection of these two planes is $1 / \sqrt{5}$.
2. (a) Show that the function

$$
y(x)=\frac{\exp (a x)}{1+\exp (x)}
$$

has a stationary point at

$$
x=\ln \left(\frac{a}{1-a}\right), \quad y=a^{a}(1-a)^{1-a}
$$

for $0<a<1$. Sketch the graph of the function for the three cases $a=1 / 2$, $a=1, a=2$ on a single set of axes.
(b) Using De Moivre's theorem show that

$$
\sin ^{5} \theta=\frac{1}{16}(\sin (5 \theta)-5 \sin (3 \theta)+10 \sin (\theta))
$$

3. Show that for $\alpha \ll 1$

$$
\int_{0}^{\pi} \cos (\alpha \sin x) d x=\pi\left(1-\frac{\alpha^{2}}{4}+\frac{\alpha^{4}}{64}+O\left(\alpha^{5}\right)\right) .
$$

4. (a) If $I_{n}(x)=\int_{0}^{x} \frac{\sinh ^{2 n+1} t}{\cosh t} d t$, show that

$$
I_{n+1}(x)=\frac{\sinh ^{2 n+2} x}{2(n+1)}-I_{n}(x), \quad n \geqslant 0 .
$$

Hence, or otherwise, find I_{3}.
(b) Find

$$
\int \frac{d x}{1-\sin x}
$$

5. Solve the equations
(a) $x y^{\prime}-2 y=x^{3} \ln x, \quad y(1)=-1$,
(b) $x^{2} y^{\prime}=x y+y^{2}, \quad y(1)=1$,
(c) $x^{2} y^{\prime \prime}+x y^{\prime}-4 y=\ln x, \quad x>0, \quad y(1)=y^{\prime}(1)=1$,
where $y^{\prime}=d y / d x$ and $y^{\prime \prime}=d^{2} y / d x^{2}$.
6. Determine the series solution for the following differential equation

$$
\left(x^{2}+1\right) \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+6 y=0
$$

about the regular point $x_{0}=0$.

