3. $f(x)=2\left|x^{2}-x\right|+\left|x^{2}-1\right|-2\left|x^{2}+x\right|$
critical values of x are $x=0$ and $x= \pm 1$
$x<-1 \Rightarrow f(x)=2\left(x^{2}-x\right)+x^{2}-1-2\left(x^{2}+x\right)=x^{2}-4 x-1$
$f(-1)=4$
$-1<x<0 \Rightarrow f(x)=3 x^{2}+1$
$f(0)=1$
$0<x<1 \Rightarrow f(x)=-5 x^{2}+1$
$f(1)=-4$
$x>1 \Rightarrow f(x)=x^{2}-4 x-1$
so graph is a sequence of portions of the above
quadratic curves as shown
$\frac{d}{d x}\left(x^{2}-4 x-1\right)=2 x-4=0$ when $x=2$
$\frac{d}{d x}\left(3 x^{2}+1\right)=6 x=0$ when $x=0$
$\frac{d}{d x}\left(-5 x^{2}+1\right)=-10 x=0$ when $x=0$
curve has a point of inflexiuon at $x=0, y=1$
and a minimumat $x=2, y=-5$
f is continuous everywhere as is obvious from the graph.

Not differentiable at $x=1, y=-4$, gradients either side are -10 on the left but -2 on the right.
$y=f(x)=x^{2}-4 x-1 \Rightarrow x=\frac{1}{2}(4 \pm \sqrt{16+4(y+1})=2 \pm \sqrt{5+y}$
$y=3 x^{2}+1 \Rightarrow x= \pm \sqrt{\frac{y-1}{3}}, y=1-5 x^{2} \Rightarrow x= \pm \sqrt{\frac{1-y}{5}}$
so inverse functions are: in $x<-1, f^{-1}(x)=2-\sqrt{5+x} ;$ in $-1<x<0 ; f^{-1}(x)=-\sqrt{\frac{x-1}{3}}$
in $0<x<1 ; f^{-1}(x)=\sqrt{\frac{1-x}{5}}$ and in $x>1 ; f^{-1}(x)=2-\sqrt{5+x}$

