If each vertex is shared between $n m$-gons, and if there are $F m$-gons in the whole polyhedron, then $m F$ counts each vertex n times, hence,

$$
\begin{equation*}
m F=n V \Longrightarrow V=\frac{m}{n} F \tag{1}
\end{equation*}
$$

Likewise, each edge is shared between 2 m -gons, hence,

$$
\begin{equation*}
m F=2 E \Longrightarrow E=\frac{m}{2} F \tag{2}
\end{equation*}
$$

Euler's formula states

$$
\begin{equation*}
V-E+F=2 \tag{3}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\frac{m}{n} F-\frac{m}{2} F+F & =2 \\
\left(\frac{m}{n}-\frac{m}{2}+1\right) F & =2 \\
(2 m-m n+2 n) F & =4 n \\
(4-(4-2 m-2 n+m n)) F & =4 n \\
(4-(n-2)(m-2)) F & =4 n \\
h F & =4 n \Longrightarrow F=\frac{4 n}{h}
\end{aligned}
$$

All polyhedra have at least 3 faces meeting at each vertex, and each face has at least 3 edges, hence, $n \geq 3$ and $m \geq 3$. F is a positive integer, hence h must also be positive, therefore $(n-2)(m-2)<4$. Thus we obtain upper bounds $n<6$ (if $m=3$) and $m<6$ (if $m=3$). Considering the values of h for $3 \leq n \leq 5$ and $3 \leq m \leq 5$, we find that the only values of (m, n) which give positive h are $(3,3),(3,4),(3,5),(4,3),(5,3)$. These are the five regular polyhedra:

name	m	n	F	V	E
tetrahedron	3	3	4	4	4
octahedron	3	4	8	6	12
icosahedron	3	5	20	12	30
cube	4	3	6	8	12
dodecahedron	5	3	12	20	30

