If each vertex is shared between n m-gons, and if there are F m-gons in the whole polyhedron, then mF counts each vertex n times, hence,

$$mF = nV \implies V = \frac{m}{n}F$$
 (1)

Likewise, each edge is shared between 2 m-gons, hence,

$$mF = 2E \implies E = \frac{m}{2}F$$
 (2)

Euler's formula states

$$V - E + F = 2 \tag{3}$$

Hence,

$$\frac{m}{n}F - \frac{m}{2}F + F = 2$$

$$\left(\frac{m}{n} - \frac{m}{2} + 1\right)F = 2$$

$$(2m - mn + 2n)F = 4n$$

$$(4 - (4 - 2m - 2n + mn))F = 4n$$

$$(4 - (n - 2)(m - 2))F = 4n$$

$$hF = 4n \implies F = \frac{4n}{h}$$

All polyhedra have at least 3 faces meeting at each vertex, and each face has at least 3 edges, hence, $n \ge 3$ and $m \ge 3$. F is a positive integer, hence h must also be positive, therefore (n-2)(m-2) < 4. Thus we obtain upper bounds n < 6 (if m = 3) and m < 6 (if m = 3). Considering the values of hfor $3 \le n \le 5$ and $3 \le m \le 5$, we find that the only values of (m, n) which give positive h are (3, 3), (3, 4), (3, 5), (4, 3), (5, 3). These are the five regular polyhedra:

name	m	n	F	V	E
tetrahedron	3	3	4	4	4
octahedron	3	4	8	6	12
icosahedron	3	5	20	12	30
cube	4	3	6	8	12
dodecahedron	5	3	12	20	30