$$
\begin{aligned}
(x * y) * z & =(x+y+a x y) * z \\
& =(x+y+a x y)+z+a(x+y+a x y) z \\
& =x+y+a x y+z+a x z+a y z+a^{2} x y z \\
& =(x+y+z)+a(x y+y z+x z)+a^{2} x y z \\
x *(y * z) & =x *(y+z+a y z) \\
& =x+(y+z+a y z)+a x(y+z+a y z) \\
& =x+y+z+a y z+a x y+a x z+a^{2} x y z \\
& =(x+y+z)+a(x y+y z+x z)+a^{2} x y z
\end{aligned}
$$

Thus, $(x * y) * z=x *(y * z)$, hence, $*$ is associative.
Since $x * y$ is symmetric, $*$ is also commutative:

$$
x * y=x+y+a x y=y+x+a y x=y * x
$$

We may verify that 0 is the identity under $*$:

$$
\begin{aligned}
& 0 * x=0+x+a \cdot 0 \cdot x=x \\
& x * 0=x+0+a \cdot x \cdot 0=x
\end{aligned}
$$

Let y be such that $x * y=0$ for a given x.

$$
\begin{aligned}
x * y & =0 \\
x+y+a x y & =0 \\
y+a x y & =-x \\
y(1+a x) & =-x \\
y & =-\frac{x}{1+a x}
\end{aligned}
$$

Hence, inverses exist for all x except $x=-\frac{1}{a}$.
$x * y \in \mathbb{R}$ for all $x, y \in \mathbb{R}$, hence $*$ is closed, is associative, has an identity, and has inverses in G where $G=\mathbb{R} \backslash\left\{-\frac{1}{a}\right\}$. Therefore $(G, *)$ is a group.

Now, let us consider x such that $x * x=0$.

$$
\begin{array}{r}
x * x=0 \\
x+x+a x x=0 \\
2 x+a x^{2}=0 \\
x(2+a x)=0
\end{array}
$$

Therefore 0 and $-\frac{2}{a}$ are self-inverse under $*$, hence, form a 2 -element subgroup of $(G, *)$.

