Examination Style Paper

1 An ellipse E has a focus at $(6,0)$ and the corresponding directrix has equation $x=12$, find
a the exact value of the eccentricity of E,
b a Cartesian equation of E.

2

$$
\mathrm{f}(x)=\frac{\cosh 2 x}{\sqrt{1+\sinh 2 x}}, \quad x>0
$$

Find the x-coordinate of the stationary point of $\mathrm{f}(x)$, giving your answer to 3 significant figures.

3 a Find $\int \frac{1+6 x}{\sqrt{1-9 x^{2}}} \mathrm{~d} x$
b Find the exact value of $\int_{0}^{\frac{1}{6}} \frac{1+6 x}{\sqrt{1-9 x^{2}}} \mathrm{~d} x$

4

$$
I_{n}=\int x^{n} \mathrm{e}^{3 x} \mathrm{~d} x, \quad n \geq 0
$$

a Prove that, for $n \geq 1$,

$$
\begin{equation*}
I_{n}=\frac{1}{3}\left(x^{n} \mathrm{e}^{3 x}-n I_{n-1}\right) \tag{3}
\end{equation*}
$$

b Find, in terms of e, the exact value of

$$
\begin{equation*}
\int_{0}^{2} x^{3} \mathrm{e}^{3 x} \mathrm{~d} x \tag{5}
\end{equation*}
$$

5 The line l_{1} has Cartesian equations $x-2=4 y=z+3$ and the line l_{2} has equation
$\mathbf{r}=\left(\begin{array}{l}4 \\ 5 \\ 1\end{array}\right)+s\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)$
The plane Π_{1} contains l_{1} and l_{2}.
a Find a vector which is normal to Π_{1}.
b Show that an equation of Π_{1} is $8 x+4 y-9 z=43$
c Find the shortest distance of the point $D(1,1,1)$ from Π_{1}.

6
Figure 1

Figure 1 shows a sketch of the curve with parametric equations

$$
x=a \cos ^{3} t, \quad y=a \sin ^{3} t, \quad 0 \leq t \leq \frac{\pi}{2}
$$

where a is a positive constant.
The curve cuts the x-axis at the point P and the y axis at the point Q.
Find the perimeter of the shaded region bounded by the arc $P Q$ and the chord $P Q$.
$7 \quad$ The point $P\left(a p^{2}, 2 a p\right)$ lies on the parabola M with equation $y^{2}=4 a x$, where a is a positive constant.
a Show that an equation of the tangent to M at P is

$$
\begin{equation*}
p y=x+a p^{2} \tag{3}
\end{equation*}
$$

The point $Q\left(9 a p^{2}, 6 a p\right)$ also lies on M.
b Write down an equation of the tangent to M at Q.
The tangent at P and the tangent at Q intersect at the point V.
c Find, as p varies, the locus of V.

8 a Using the definition of $\sinh x$ or $\operatorname{cosech} x$ in terms of exponentials, show that, for $x \geq 0$

$$
\begin{equation*}
\operatorname{arcosech} x=\ln \left(\frac{1+\sqrt{1+x^{2}}}{x}\right) \tag{5}
\end{equation*}
$$

b Solve the equation

$$
3 \operatorname{coth}^{2} x=7 \operatorname{cosech} x+1
$$

giving your answers in terms of natural logarithms.
$9 \quad \mathbf{A}=\left(\begin{array}{ccc}3 & 0 & 0 \\ k & 2 & 5 \\ l & 2 & -1\end{array}\right)$ where k and l are constants
a Show that $\left(\begin{array}{l}0 \\ 5 \\ 2\end{array}\right)$ is an eigenvector of \mathbf{A} and find the corresponding eigenvalue.
Given that -3 is also an eigenvalue of \mathbf{A}
b find the corresponding eigenvector.
Given that $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ is also an eigenvector of \mathbf{A}
c find the corresponding eigenvalue, the value of k and the value of l.

Worked Solutions

1 a $a e=6$ and $\frac{a}{e}=12$
Solving $\quad a^{2}=a e \times \frac{a}{e}=72$
Use formula from booklet for

So $\quad e=\frac{6}{\sqrt{72}}=\frac{1}{\sqrt{2}}$
b $\quad b^{2}=72\left(1-\frac{1}{2}\right)=36$

So equation of E is $\quad \frac{x^{2}}{72}+\frac{y^{2}}{36}=1$

$$
\text { Use } b^{2}=a^{2}\left(1-e^{2}\right)
$$

Use the standard equation of an ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
$2 \quad \mathrm{f}^{\prime}(x)=\frac{\sqrt{1+\sinh 2 x} \times 2 \sinh 2 x-\cosh 2 x \times \frac{1}{2}(1+\sinh 2 x)^{-\frac{1}{2}} \times 2 \cosh 2 x}{(1+\sinh 2 x)}$

$$
\mathrm{f}^{\prime}(x)=\frac{2 \sinh 2 x(1+\sinh 2 x)-\cosh ^{2} 2 x}{(1+\sinh 2 x)^{\frac{3}{2}}}
$$

Differentiate using the quotient rule and then simplify. Then set derivative $=0$

$$
\mathrm{f}^{\prime}(x)=0 \Rightarrow 0=\sinh ^{2} 2 x+2 \sinh 2 x-1
$$

Use $\cosh ^{2} A-\sinh ^{2} A=1$
So $\quad \sinh 2 x=-1 \pm \sqrt{2}$
and $\quad x=\frac{1}{2} \operatorname{arsinh}(\sqrt{2}-1)$

$$
=0.201599 \ldots=0.202(3 \mathrm{sf})
$$

Solve using the quadratic formula or complete the square

3
a $\quad I=\int \frac{1}{\sqrt{1-9 x^{2}}} \mathrm{~d} x+\int 6 x\left(1-9 x^{2}\right)^{-\frac{1}{2}} \mathrm{~d} x$
Split the integral into two parts
M1

So $\quad I=\frac{1}{3} \arcsin 3 x-\frac{2}{3}\left(1-9 x^{2}\right)^{\frac{1}{2}}+c$
First integral is based on $\arcsin x$ given in formula booklet.
For second identify $\mathrm{f}^{\prime}(x) \mathrm{f}(x)$ or use substitution
b $I=\left[\frac{1}{3} \arcsin 3 x-\frac{2}{3}\left(1-9 x^{2}\right)^{\frac{1}{2}}\right]_{0}^{\frac{1}{6}}$
$=\left(\frac{1}{3} \arcsin \left(\frac{3}{6}\right)-\frac{2}{3}\left(1-\frac{9}{36}\right)^{\frac{1}{2}}\right)-\left(0-\frac{2}{3}\right)$
$=\frac{\pi}{18}-\frac{\not 2}{3} \times \frac{\sqrt{3}}{\not 2}+\frac{2}{3}$
Substitute limits and recall that
$\sin \left(\frac{\pi}{6}\right)=\frac{1}{2}$

M1A1
M1A1

Use integration by parts
Simplify to given answer
A1cso
b

$$
\begin{aligned}
& I_{3}=\frac{1}{3} x^{3} \mathrm{e}^{3 x}-I_{2} \\
& I_{2}=\frac{1}{3} x^{2} \mathrm{e}^{3 x}-\frac{2}{3} I_{1} \\
& I_{1}=\frac{1}{3} x \mathrm{e}^{3 x}-\frac{1}{3} I_{0} \\
& I_{0}=\int \mathrm{e}^{3 x} \mathrm{~d} x=\frac{1}{3} \mathrm{e}^{3 x}+c
\end{aligned}
$$

Use integration to find
the I_{0} term

So $I_{3}=\frac{1}{3} x^{3} \mathrm{e}^{3 x}-\frac{1}{3} x^{2} \mathrm{e}^{3 x}+\frac{2}{9} x \mathrm{e}^{3 x}-\frac{2}{9} \times \frac{1}{3} \mathrm{e}^{3 x}$

$$
\begin{aligned}
\int_{0}^{2} x^{3} \mathrm{e}^{3 x} \mathrm{~d} & =\left[\frac{1}{3} x^{3} \mathrm{e}^{3 x}-\frac{1}{3} x^{2} \mathrm{e}^{3 x}+\frac{2}{9} x \mathrm{e}^{3 x}-\frac{2}{9} \times \frac{1}{3} \mathrm{e}^{3 x}\right]_{0}^{2} \\
& =\left(\frac{8}{3} \mathrm{e}^{6}-\frac{4}{3} \mathrm{e}^{6}+\frac{4}{9} \mathrm{e}^{6}-\frac{2}{27} \mathrm{e}^{6}\right)-\left(-\frac{2}{27}\right) \\
& =\frac{46}{27} \mathrm{e}^{6}+\frac{2}{27}
\end{aligned}
$$

> Use the reduction formula from (a)

Link the terms together
Apply the limits

5 a l_{1} has vector equation $\mathbf{r}=\left(\begin{array}{c}2 \\ 0 \\ -3\end{array}\right)+t\left(\begin{array}{l}4 \\ 1 \\ 4\end{array}\right)$ Perpendicular vector to plane is $\left(\begin{array}{l}4 \\ 1 \\ 4\end{array}\right) \times\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)=\left(\begin{array}{c}-8 \\ -4 \\ 9\end{array}\right)$

Use the vector product
b Since plane contains both lines:

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \cdot\left(\begin{array}{c}
-8 \\
-4 \\
9
\end{array}\right)=\left(\begin{array}{c}
-8 \\
-4 \\
9
\end{array}\right) \cdot\left(\begin{array}{c}
2 \\
0 \\
-3
\end{array}\right)=-43
$$

Use $\mathbf{r . n = a . n}$

 formula for aSo $-8 x-4 y+9 z=-43$
Or $8 x+4 y-9 z=43$
c Vector from $\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$ to $\left(\begin{array}{c}2 \\ 0 \\ -3\end{array}\right)$ is $\left(\begin{array}{c}1 \\ -1 \\ -4\end{array}\right)$
Find a suitable vector and then scalar product with $\hat{\mathbf{n}}$

Distance is $\pm\left(\begin{array}{c}1 \\ -1 \\ -4\end{array}\right) \bullet\left(\begin{array}{c}-8 \\ -4 \\ 9\end{array}\right) \times \frac{1}{\sqrt{(-8)^{2}+(-4)^{2}+9^{2}}}$
So shortest distance is $\frac{40}{\sqrt{161}}$
$6 \quad P(a, 0)$ and $Q(0, a)$ so chord $P Q=a \sqrt{2}$
$\operatorname{Arc} P Q=\int \sqrt{\dot{x}^{2}+\dot{y}^{2}} \mathrm{~d} t$
$\dot{x}=3 a \cos ^{2} t \times(-\sin t)$
$\dot{y}=3 a \sin ^{2} t \times(\cos t)$
So arc $=\int 3 a \sin t \cos t \sqrt{\sin ^{2} t+\cos ^{2} t} \mathrm{~d} t$

$$
=\int \frac{3 a}{2} \sin 2 t \mathrm{~d} t
$$

Use $\sin 2 A$ formula to help

$$
=\left[-\frac{3 a}{4} \cos 2 t\right]_{0}^{\frac{\pi}{2}}
$$ integrate

$=\left(\frac{3 a}{4}\right)-\left(-\frac{3 a}{4}\right)$
So perimeter $=\frac{3 a}{2}+a \sqrt{2}$
$7 \quad \mathbf{a} \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{\dot{y}}{\dot{x}}=\frac{2 a}{2 a p}=\frac{1}{p}$

Equation is $\quad y-2 a p=\frac{1}{p}\left(x-a p^{2}\right)$
So $\quad p y=x+a p^{2}$
b Let $q=3 p$
So equation is:
$3 p y=x+9 a p^{2}$
c Subtracting equations
$2 p y=8 a p^{2}$
So $\quad y=4 a p$
And $\quad x=3 a p^{2}$

Therefore $\quad y^{2}=16 a^{2} p^{2}$ and $3 y^{2}=48 a^{2} p^{2}$
So locus of V is: $\quad 3 y^{2}=16 a x$

Differentiate using chain rule to find gradient

Let Q be $\left(a q^{2}, 2 a q\right)$ and then

Solve simultaneously to find the coordinates of V
Eliminate p to find locus

8 a Let $y=\operatorname{arcosech} x$
Then $x=\operatorname{cosech} y$

So $\sinh y=\frac{1}{x}$
Use the definition of $\sinh x$

Rearrange to form quadratic in e^{y}

Use the quadratic formula

Since $\mathrm{e}^{y}>0$ then we must choose the " + " sign
So $y=\operatorname{arcosech} x=\ln \left(\frac{1+\sqrt{1+x^{2}}}{x}\right)$
b $3+3 \operatorname{cosech}^{2} x=7 \operatorname{cosech} x+1$
$3 c^{2}-7 c+2=0$
$(3 c-1)(c-2)=0$ $\operatorname{cosech} x=2$ or $\frac{1}{3}$
So $x=\ln \left(\frac{1+\sqrt{5}}{2}\right)$ or $\ln (3+\sqrt{10})$

Take logs

A1cso

Use $\operatorname{coth}^{2} x=1+\operatorname{cosech}^{2} x$
Solve quadratic in $\operatorname{cosech} x$

Use formula from part (a)

M1A1
$9 \quad \mathbf{a} \quad \mathbf{A}\left(\begin{array}{l}0 \\ 5 \\ 2\end{array}\right)=\left(\begin{array}{c}0 \\ 20 \\ 8\end{array}\right)=4 \times\left(\begin{array}{l}0 \\ 5 \\ 2\end{array}\right)$
Multiply A times the vector and use the definition of an eigenvector: $\mathbf{A x}=\lambda \boldsymbol{x}$

So the vector is an eigenvector with eigenvalue of 4
b $\quad \mathbf{A}\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=-3\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \Rightarrow$
$3 x=-3 x$ and so $x=0$
$k x+2 y+5 z=-3 y$
$l x+2 y-z=-3 z$
Solving: $y=-z$
So the eigenvector is: $p\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right)$, for some constant p
c $\quad \mathbf{A}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=\lambda\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right) \Rightarrow$
Again use the basic definition of an eigenvector

Solve to find a solution
$3=\lambda$ and so the eigen value is 3
$k+7=3$ so $k=-4$
$l+1=3$ so $l=2$

