Examination Style Paper

(2)

1	An ellipse E has a	focus at (6, 0) and the	e corresponding directrix	has equation $x = 12$, find
---	--------------------	-------------------------	---------------------------	------------------------------

- **a** the exact value of the eccentricity of E, (4)
- **b** a Cartesian equation of E.

Further Pure Mathematics 3

Exam Ca Relax, refres

$$f(x) = \frac{\cosh 2x}{\sqrt{1 + \sinh 2x}}, \qquad x > 0$$

1 0

Find the x- coordinate of the stationary point of f(x), giving your answer to 3 significant figures. (7)

3 a Find
$$\int \frac{1+6x}{\sqrt{1-9x^2}} dx$$
 (5)

b Find the exact value of
$$\int_{0}^{\frac{1}{6}} \frac{1+6x}{\sqrt{1-9x^2}} dx$$
 (3)

4

$$I_n = \int x^n \mathrm{e}^{3x} \, \mathrm{d}x, \quad n \ge 0$$

a Prove that, for $n \ge 1$,

$$I_n = \frac{1}{3} \left(x^n e^{3x} - nI_{n-1} \right)$$
(3)

b Find, in terms of e, the exact value of

$$\int_0^2 x^3 \mathrm{e}^{3x} \mathrm{d}x \tag{5}$$

5 The line l_1 has Cartesian equations x - 2 = 4y = z + 3 and the line l_2 has equation

 $\mathbf{r} = \begin{pmatrix} 4\\5\\1 \end{pmatrix} + s \begin{pmatrix} -1\\2\\0 \end{pmatrix}$

The plane Π_1 contains l_1 and l_2 .

- **a** Find a vector which is normal to Π_1 . (3)
- **b** Show that an equation of Π_1 is 8x + 4y 9z = 43 (2)
- **c** Find the shortest distance of the point D(1, 1, 1) from Π_1 . (3)

Figure 1 shows a sketch of the curve with parametric equations

$$x = a\cos^3 t$$
, $y = a\sin^3 t$, $0 \le t \le \frac{\pi}{2}$

P

where *a* is a positive constant.

The curve cuts the x-axis at the point P and the y axis at the point Q. Find the perimeter of the shaded region bounded by the arc PQ and the chord PQ. (8)

7 The point $P(ap^2, 2ap)$ lies on the parabola M with equation $y^2 = 4ax$, where a is a positive constant.

a Show that an equation of the tangent to *M* at *P* is $py = x + ap^2$

(3)

The point $Q (9 ap^2, 6ap)$ also lies on M. **b** Write down an equation of the tangent to M at Q. (2)

The tangent at P and the tangent at Q intersect at the point V. **c** Find, as p varies, the locus of V.

(4)

a Using the definition of sinhx or cosechx in terms of exponentials, show that, for $x \ge 0$

$$\operatorname{arcosech} x = \ln\left(\frac{1+\sqrt{1+x^2}}{x}\right)$$
(5)

b Solve the equation

8

 $3 \coth^2 x = 7 \operatorname{cosech} x + 1$

giving your answers in terms of natural logarithms. (5)

Exam Café Relox, refresh, result! Further Pure Mathematics 3

Worked Solutions

1	a $ae = 6$ and $\frac{a}{e} = 12$	Use formula from booklet for focus and directrix	B1 B1
	Solving $a^2 = ae \times \frac{a}{e} = 72$ So $e = \frac{6}{\sqrt{72}} = \frac{1}{\sqrt{2}}$		M1 A1
	b $b^2 = 72(1-\frac{1}{2}) = 36$	Use $b^2 = a^2 (1 - e^2)$	M1
	So equation of <i>E</i> is $\frac{x}{72} + \frac{y}{36} = 1$	Use the standard equation of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	A1
2	$f'(x) = \frac{\sqrt{1 + \sinh 2x} \times 2\sinh 2x - \cosh 2x \times \frac{1}{2}(1 + \sin x)}{(1 + \sinh 2x)}$	$\frac{1}{2} \ln 2x = 2 \cosh 2x$	M1A1A1
	$f'(x) = \frac{2\sinh 2x(1+\sinh 2x) - \cosh^2 2x}{(1+\sinh 2x)^{\frac{3}{2}}}$	Differentiate using the quotient rule and then simplify. Then set derivative = 0	
	$f'(x) = 0 \Longrightarrow 0 = \sinh^2 2x + 2\sinh 2x - 1$	Use $\cosh^2 A - \sinh^2 A = 1$	M1 A1
	So $\sinh 2x = -1 \pm \sqrt{2}$ and $x = \frac{1}{2} \operatorname{arsinh}(\sqrt{2} - 1)$	Solve using the quadratic formula or complete the	M1

= 0.201599... = 0.202 (3sf)

A1

square

Further Pure Mathematics 3 Exam Cate Relax, refresh, result

3 a
$$I = \int \frac{1}{\sqrt{1-9x^2}} dx + \int 6x (1-9x^2)^{-\frac{1}{2}} dx$$

So
$$I = \frac{1}{3} \arcsin 3x - \frac{2}{3} \left(1 - 9x^2\right)^{\frac{1}{2}} + c$$

$$\mathbf{b} \quad I = \left[\frac{1}{3}\arcsin 3x - \frac{2}{3}\left(1 - 9x^2\right)^{\frac{1}{2}}\right]_0^{\frac{1}{6}}$$
$$= \left(\frac{1}{3}\arcsin\left(\frac{3}{6}\right) - \frac{2}{3}\left(1 - \frac{9}{36}\right)^{\frac{1}{2}}\right) - \left(0 - \frac{2}{3}\right)$$
$$= \frac{\pi}{18} - \frac{\cancel{2}}{3} \times \frac{\sqrt{3}}{\cancel{2}} + \frac{2}{3}$$
$$= \frac{\pi}{18} - \frac{\sqrt{3}}{3} + \frac{2}{3}$$

a $I_n = \int x^n d\left(\frac{1}{3}e^{3x}\right) = \frac{1}{3}e^{3x}x^n - \int \frac{1}{3}e^{3x}nx^{n-1} dx$

Split the integral into two parts

M1

M1A1

M1A1

First integral is based on arcsinx given in formula booklet. For second identify f'(x)f(x) or use substitution

Substitute limits and recall that $\sin\left(\frac{\pi}{6}\right) = \frac{1}{2}$

M1

A1 A1

Use integration by parts	M1A1
Simplify to given answer	Alcso

4

$$I_{3} = \frac{1}{3}x^{3}e^{3x} - I_{2}$$
$$I_{2} = \frac{1}{3}x^{2}e^{3x} - \frac{2}{3}I_{1}$$
$$I_{1} = \frac{1}{3}xe^{3x} - \frac{1}{3}I_{0}$$

 $I_n = \frac{1}{3} \left(x^n \mathrm{e}^{3x} - n I_{n-1} \right)$

$$I_{0} = \int e^{3x} dx = \frac{1}{3}e^{3x} + c$$

So $I_{3} = \frac{1}{3}x^{3}e^{3x} - \frac{1}{3}x^{2}e^{3x} + \frac{2}{9}xe^{3x} - \frac{2}{9} \times \frac{1}{3}e^{3x}$
$$\int_{0}^{2} x^{3}e^{3x} dx = \left[\frac{1}{3}x^{3}e^{3x} - \frac{1}{3}x^{2}e^{3x} + \frac{2}{9}xe^{3x} - \frac{2}{9} \times \frac{1}{3}e^{3x}\right]_{0}^{2}$$
$$= \left(\frac{8}{3}e^{6} - \frac{4}{3}e^{6} + \frac{4}{9}e^{6} - \frac{2}{27}e^{6}\right) - \left(-\frac{2}{27}\right)$$
$$= \frac{46}{27}e^{6} + \frac{2}{27}$$

© Edexcel Limited 2009

A1

Exan	Relax, refresh, resulti		
5	a l_1 has vector equation $\mathbf{r} = \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} + t \begin{pmatrix} 4 \\ 1 \\ 4 \end{pmatrix}$	 1:0.2	B1for 25:1 ratio
	Perpendicular vector to plane is $\begin{pmatrix} 4\\1\\4 \end{pmatrix} \times \begin{pmatrix} -1\\2\\0 \end{pmatrix} = \begin{pmatrix} -8\\-4\\9 \end{pmatrix}$	Use the vector product	M1A1
	b Since plane contains both lines: $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \bullet \begin{pmatrix} -8 \\ -4 \\ 9 \end{pmatrix} = \begin{pmatrix} -8 \\ -4 \\ 9 \end{pmatrix} \bullet \begin{pmatrix} 2 \\ 0 \\ -3 \end{pmatrix} = -43$	Use r.n=a.n formula for a plane	M1 A1cso
	So $-8x - 4y + 9z = -43$ Or $8x + 4y - 9z = 43$ c Vector from $\begin{pmatrix} 1\\1 \end{pmatrix}$ to $\begin{pmatrix} 2\\0 \end{pmatrix}$ is $\begin{pmatrix} 1\\-1 \end{pmatrix}$	Find a suitable vector and then scalar	M1
	(1) (-3) (-4) Distance is $\pm \begin{pmatrix} 1 \\ -1 \\ -4 \end{pmatrix} \bullet \begin{pmatrix} -8 \\ -4 \\ 9 \end{pmatrix} \times \frac{1}{\sqrt{(-8)^2 + (-4)^2 + 9^2}}$	product with n	M1
	So shortest distance is $\frac{40}{\sqrt{161}}$		A1
6	$P(a, 0)$ and $Q(0, a)$ so chord $PQ = a\sqrt{2}$		B1
	Arc $PQ = \int \sqrt{\dot{x}^2 + \dot{y}^2} dt$	Use formula from formula booklet	
	$\dot{x} = 3a\cos t \times (-\sin t)$ $\dot{y} = 3a\sin^2 t \times (\cos t)$		M1 A1
	So arc = $\int 3a \sin t \cos t \sqrt{\sin^2 t + \cos^2 t} dt$		M1
	$= \int \frac{3a}{2} \sin 2t \mathrm{d}t$	Use sin2 <i>A</i> formula to help integrate	M1
	$= \left[-\frac{3a}{4} \cos 2t \right]_{0}^{2}$ (3a) (3a)		A1
	$= \left(\frac{3a}{4}\right) - \left(-\frac{3a}{4}\right)$ So perimeter $= \frac{3a}{2} + a\sqrt{2}$		M1 A1

-

6

Exar	ncafé Relax, refresh, resulti Further Pure Mathematics 3		
7	a $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\dot{y}}{\dot{x}} = \frac{2a}{2ap} = \frac{1}{p}$	Differentiate using chain rule to find gradient	M1
	Equation is $y - 2ap = \frac{1}{p}(x - ap^2)$ So $py = x + ap^2$		M1 A1cso
	b Let $q = 3p$	Let Q be $(aq^2, 2aq)$ and then compare with given point	M1
	So equation is: $3py = x + 9ap^2$		A1
	c Subtracting equations $2 py = 8ap^2$ So $y = 4ap$ And $x = 3ap^2$	Solve simultaneously to find the coordinates of <i>V</i>	M1 A1
	Therefore $y^2 = 16a^2p^2$ and $3y^2 = 48a^2p^2$ So locus of V is: $3y^2 = 16ax$	Eliminate <i>p</i> to find locus	M1 A1
8	a Let $y = \operatorname{arcosech} x$ Then $x = \operatorname{cosech} y$ So $\sinh y = \frac{1}{x}$	Use the definition of sinhx	M1
	$\frac{e^{y} - e^{-y}}{2} = \frac{1}{x}$ $re^{2y} - r = 2e^{y} \text{ or } re^{2y} - 2e^{y} - r = 0$	Rearrange to form quadratic in e^{y}	M1
	$e^{y} = \frac{2 \pm \sqrt{4 + 4x^{2}}}{2x} = \frac{1 \pm \sqrt{1 + x^{2}}}{x}$	Use the quadratic formula	A1 M1
	Since $e^{y} > 0$ then we must choose the "+" sign So $y = \operatorname{arcosech} x = \ln\left(\frac{1+\sqrt{1+x^2}}{x}\right)$	Take logs	Alcso
	b $3 + 3\operatorname{cosech}^{2} x = 7\operatorname{cosech} x + 1$ $3c^{2} - 7c + 2 = 0$ (3c - 1)(c - 2) = 0	Use $\operatorname{coth}^2 x = 1 + \operatorname{cosech}^2 x$	M1
	$cosechx = 2 \text{ or } \frac{1}{3}$ $(1+\sqrt{5})$	Solve quadratic in cosech <i>x</i>	M1A1
	So $x = \ln\left(\frac{1+\sqrt{3}}{2}\right)$ or $\ln\left(3+\sqrt{10}\right)$	Use formula from part (a)	M1A1

Exan	Relax, refresh, result Further Pure Mathematics 3		
9	$\mathbf{a} \mathbf{A} \begin{pmatrix} 0\\5\\2 \end{pmatrix} = \begin{pmatrix} 0\\20\\8 \end{pmatrix} = 4 \times \begin{pmatrix} 0\\5\\2 \end{pmatrix}$	Multiply A times the vector and use the definition of an eigenvector: $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$	M1
	So the vector is an eigenvector with eigenvalue of 4		A1
	b $\mathbf{A} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = -3 \begin{pmatrix} x \\ y \\ z \end{pmatrix} \Rightarrow$ 3x = -3x and so $x = 0kx + 2y + 5z = -3y$	Again use the basic definition of an eigenvector] M1 B1
	lx + 2y - z = -3z Solving: $y = -z$	Solve to find a solution	M1
	So the eigenvector is: $p \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, for some constant p		A1
	$\mathbf{c} \mathbf{A} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \lambda \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \Rightarrow \qquad \qquad$		M1A1
	$3 = \lambda$ and so the eigen value is 3 k + 7 = 3 so $k = -4$	Γ	M1A1A1
	l + 1 = 3 so $l = 2$	L	