An experiment was carried out to investigate the effect of incubation temperature and concentration of bacterial inoculum on measurement of log(m-prime) which is the log-concentration of an antibiotic at which the edge of a zone of inhibition of the bacteria on an agar plate occurs. The recommended method uses a temperature of 30° C and an initial inoculum of bacteria of 10^{5} c.f.u/ml.

The experiment used three temperatures and four inoculum levels and was replicated three times. For MINITAB, temperatures are coded 1,2 & 3 and the initial inocula are coded 1,2,3 & 4. The calculated values of log ('m-prime') and an ANOVA using Minitab were as follows:

	7	Femperature °C		
Inoculum 0.5×10^5 1.0×10^5 2.0×10^5 4.0×10^5	25 2.18 2.42 2.3 1.45 1.50 1.5	30 7 1.40 1.65 1.36 5 1.20 1.20 2.00 0 1.60 1.55 1.45	1.50 1.80 1.70 1.00 1.60 1.30	
	riance (Balanced		values replaced by #	
Source temp dosage temp*dosage Error Total	DF SS # 0.21391 # 1.29692 # 1.21349 # 0.86813 # 3.59246	MS F 0.10695 2.96 0 0.43231 11.95 0 0.20225 5.59	P .071 .000 #	
Table of means Means				
temp N 1 12 2 12 3 12	log(mprime) 1.7142 1.5258 1.6083			
innoc N 1 9 2 9 3 9 4 9	log(mprime) 1.9422 1.5444 1.4778 1.5000	pto		
temp innoc 1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 3 1 3 2 3 3 3 4	<pre>N log(mpr 3 2.3233 3 1.5000 3 1.6000 3 1.4333 3 1.4700 3 1.4667 3 1.5333 3 1.6333 3 2.0333 3 1.6667 3 1.3000 3 1.4333</pre>			

1

- Using the analysis of variance table write out a table listing the sources as given above and completing the column labelled DF in the printout above.
 (Do not write out all the other figures!)
- (ii) The p-value for the interaction 'temp*dosage' has been removed. Test using statistical tables whether or not there is an interaction between temperature and inoculum level.
- (iii) Re-write the table of means, properly labelled in a manner suitable for publication in a scientific journal.
- (iv) Sketch a suitable response plot.
- (v) Calculate the Least Significant Difference for comparing the means in your response plot and use it to explain the apparent pattern of response to temperature changes for each dosage.

An experiment was carried out to investigate the retention of ascorbic acid in a particular type of beans under storage conditions. Three storage temperatures -10° C, -20° C and -30° C and four storage times 2, 4, 6 and 8 weeks were compared. A three by four factorial design was used with each treatment replicated 3 times.

The following ANOVA table was obtained from MINITAB with its associated tables of means. Some figures in the ANOVA have been replaced by asterisks.

ANOVA						
Factor Temp Storage	Type Level fixed 3 fixed 4	.s Value 1 1	es 2 3 2 3	4		
ANOVA for a Source Temp Storage Interaction Error Total	ascorbic act df * n * *	id SS 334.389 40.258 34.056 17.000 425.927	MS 167.19 13.51 *** 0.708	F 236.04 19.08 ***	p 0.000 0.000	
Means for 1 1 15.32 2 13.82 3 8.22 ALL 12.45	25 25 25					
Means for 3 1 13.76 2 13.10 3 12.00 4 10.96 ALL 12.45	57 00 00 57					
	interaction Storage 1 1 1 2 1 3 1 4 2 1 2 2 2 3 2 4 3 1 3 2 3 3 3 4	Mean 15.000 15.700 15.300 15.000 14.300 13.700 12.300 11.300 9.300 7.000 5.300				

- (i) Complete the columns in the ANOVA table for the degrees of freedom, mean squares and F-values.
- (ii) Test whether there is any evidence of interaction between the temperature and the duration of storage.
- (iii) Use the computer output from above to complete the following table giving the figures correct to 1 d.p.

<u>2</u>

- 2 weeks
- 4 weeks
- 6 weeks
- 8 weeks

Mean

- (iv) Draw a response plot to illustrate the possible interaction.
- (v) Calculate a suitable Least Significant Difference for comparing the appropriate means and use it to explain what conclusions can be drawn from the table.

Nitrogen dioxide is an air pollutant caused in part by traffic. A study of its effect on lung function tested serum fluorescence in mice exposed to 0.5ppm NO₂ for 10, 12 and 14 days compared with control mice whose serum fluorescence was also measured at 10, 12 and 14 days. Thirty-six mice were used, each being tested once. High values indicate greater lung damage.

	Serum fluorescence 10 days 12 days 14 da							
Control group	143 169 95	179 160 87	76 40 119					
	111 132 150	115 171 146	72 163 78					
Exposed to NO ₂	152 83 91	141 132 201	149 104 125					
	86 150 108	242 209 114	147 200 178					

An analysis of variance is given below:

Analysis of Variance for serum-fluorescence										
Source	DF	SS	MS	F	Р					
Exposure	1	4579	4579	3.17	0.085					
Time	2	10600	5300	3.67	0.037					
Exposure*time	2	10062	5031	3.48	0.044					
Error	30	43312	1444							
Total	35	8553								

(a) The above is a factorial experiment. What are the two factors and how many levels has each? How many replicates are there?

- (b) Calculate the mean for each of the six treatments and draw a response plot. Does this suggest that there is interaction between the two factors?
- (c) Using the analysis of variance, carry out a significance test to determine whether there is evidence of interaction.
- (d) Calculate a suitable Least Significant Difference (LSD) to test for differences among the six treatment means calculated for (b) and explain which differences are significant.
- (e) The above data are genuine. There appears to be something radically wrong. What is it?

A biologist carried out an experiment to explore the strength of different lures in attracting spruce moths in relation to the position of the lures on the tree. He placed traps at four different positions in the tree: ground, lower branches, middle branches and top branches with three types of lure: chemical, scent and sugar. He counted the number of spruce moths found in each trap after 48 hours. The results from the experiment are given below.

Rows: Location Columns: Lure

Ground	Chemical 22 25 14 16 19	Scent 17 12 13 19 14	Sugar 18 27 15 29 16
Lower	35 39 41 31 34	44 21 38 32 9	22 17 21 29 27
Middle	37 40 18 28 36	39 12 42 25 21	16 28 14 17 12
Тор	32 29 16 18 20	28 19 32 15 13	35 22 33 21 17

The data were analysed using analysis of variance. The computer output of this analysis is below. Some of the numbers have been replaced by asterisks.

Source	DF	SS	MS	F	Р
Location	*	1169.4	389.8	7.27	0.000
Lure	*	327.0	163.5	3.05	0.057
Interaction	*	809.0	134.8	*	*
Error	*	2573.6	53.6		
Total	59	4879.0			

Treatment means

	Chemical	Scent	Sugar	All
Ground	20.0	15.5	22.6	19.8
Lower	36.4	34.7	24.0	32.6
Middle	33.8	32.3	19.2	30.0
Тор	24.8	24.0	27.6	25.5
All	30.3	28.7	23.8	27.8

- a) What is the name for the experimental design used in the above study? What are the two factors? What is the number of levels for each factor? How many different treatments are there? What is the number of replicates for each treatment? What is the total number of observations?
- b) Replace the asterisks in the columns with the appropriate values for the degrees of freedom, mean square and F-value in the Minitab ANOVA output above.
- c) Draw a response plot with the 12 treatment means in the last table above. Does the response plot suggest that there is an interaction between Location and Lure?
- d) Using the ANOVA output in the first table above, carry out a significance test to determine whether there is any evidence of interaction between Location and Lure.
- e) Calculate a suitable Least Significant Difference (LSD) to test for differences among the 12 treatment means in the last table above. Explain which differences are significant and what conclusions could be drawn from the experiment.

<u>4</u>

The car company Ectel has developed a new car filter that reduces pollution from exhaust gases. However, it is very important that such filters do not increase noise pollution by reducing gas pollution. Therefore, the noise level (decibels) for the new Ectel filter was compared with a standard filter for three different sizes of vehicle (small, medium and large). The data are presented in the table below.

		Vehicle size					
		Small	Medium	Large			
Type of	Standard	810 820 820	840 840 845	785 790 785			
silencer		835 835 835	845 855 850	760 760 770			
	Ectel filter	820 820 820	820 820 825	775 775 775			
		825 825 825	815 825 825	770 760 765			

Noise level reading (decibels) according to type of silencer and vehicle size

- a) The data in the above table are based on a factorial design with two factors. State the response variable, the factors, the levels for each factor, the number of replications for each treatment combination and the total number of observations.
- b) Replace the asterisks in the table below with the appropriate values for the degrees of freedom and the F-value for interaction.

Analysis of variance for Noise level reading (decibels)

Source	DF	SS	MS	F	P	
Vehicle size	*	26051.4	13025.7	199.12	0.000	
Type of silencer	*	1056.3	1056.3	16.15	0.000	
Interaction	*	804.2	402.1	*	*	
Error	*	1962.5	65.4			
Total	35	29874.3				

c) Draw a response plot with the appropriate means in the table below. Does it suggest that there is interaction between Vehicle size and Type of silencer?

	Table of means									
			Vehicle size							
		Small	Medium	Large	All					
Type of	Standard	825.83	845.83	775.00	815.55					
silencer	Ectel filter	822.50	821.67	770.00	804.72					
	All	824.17	824.17 833.75 772.50							

- d) Using the F-value for interaction you calculated in b) above for the second table, carry out a significance test to determine whether there is any evidence of interaction between Vehicle size and Type of silencer.
- e) Calculate a suitable Least Significant Difference to compare the means for interaction in the table of means above. Explain which differences are significant and draw appropriate conclusions.

Bird feathers could serve as indicators of environmental pollution. Birds could be exposed to contaminants by direct contact or via ingestion of water or food. Raptors (birds of prey) are particularly good bioindicators because they feed at the top of the food chain and could accumulate contaminants to a level that is easily detectable. Table 10.1 below contains the concentration of cadmium (Cd), lead (Pb) and mercury (Hg) in falcon feathers (ppm dry weight) in three different regions of the country. The feathers of four different birds were used to measure metal concentrations for each region.

			Region							
			1	2		3				
Heavy	Cd	0.62	0.58	0.58	0.61	0.61	0.60			
metal		0.61	0.59	0.60	0.59	0.72	0.73			
	Hg	0.62	0.58	1.53	1.71	3.16	2.96			
	_	0.61	0.59	1.48	1.77	3.14	3.18			
	Pb	1.18	1.21	2.76	2.45	0.93	0.87			
		1.19	1.23	2.63	2.68	1.10	0.94			

Metal concentrations (ppm dry weight) in feathers of falcons collected in three different regions of the country; Cd - cadmium, Pb - lead, Hg - mercury

- a) The data in the table above are based on a factorial design with two factors. State the response variable, the factors, the levels for each factor, the number of replications for each treatment combination and the total number of observations.
- b) Use the MINITAB output in the table below to test for any evidence of:
 i) an interaction between the factors;
 ii) a main offect of either factor
 - ii) a main effect of either factor.

ANOVA for metal concentrations (ppm dry weight) in falcon feathers

Source	DF	SS	MS	F	P			
Heavy metal	2	20.1604	10.0802	993.22	0.000			
Region	2	0.1277	0.0638	6.29	0.006			
Heavy metal*Region	4	10.9989	2.7497	270.93	0.000			
Error	27	0.2740	0.0101					
Total	35	31.5610						

c) Draw a response plot with the appropriate means from the table below. Does it suggest that there is interaction between Region and Heavy metal? [Tip: Put Heavy metal on the x-axis.]

Table of means

			Region	1	Overall
		1	2	3	Mean
Heavy metal	Cd	0.600	0.595	0.665	0.620
	Hg	2.622	1.623	3.110	2.452
	Pb	1.202	2.630	0.960	1.597
	Overall	1.475	1.616	1.578	1.556
	Mean				

d) On the basis of your answers to (b) above calculate the LSD where appropriate and explain clearly what is shown by the study about the pollution by the three metals (Cd, Hg and Pb) in the three different regions of the country. A nutritionist studied the inactivation of vitamin A in rancid fat (Sokal, RR & Rohlf FJ 1995. Biometry. New York: WH Freeman and Co.). As part of the study, the consumption of food by rats when it contained fresh or rancid fat was investigated. The experiment was carried out on 6 male and 6 female rats. Three randomly selected individuals from each sex were fed with food containing fresh fat and the other three individuals from each sex were fed food with rancid fat. Food consumption in grams was recorded. The data are presented in the table below.

Data on consumption of food (g) containing fresh or rancid fat by male and female rats

Rows: Sex	Columns: Type of Fat					
	Fresh	Rancid				
Male	709 679 69959	92 538 476				
Female	657 594 67750	08 505 539				

The data were analysed using analysis of variance. The computer output of this analysis is in the tables below. Some of the numbers have been replaced by asterisks.

Analysis of Variance for food consumption	on (g) by rats
---	----------------

Source	DF	Seq SS	Adj SS	Adj MS	F	P	
Type of Fat	*	61204	61204	61204	*	*	
Sex	*	3781	3781	3781	*	*	
Type of Fat*Sex	*	919	919	919	0.63	0.450	
Error	*	11667	11667	1458			
Total	11	77570					

Treatment means for food consumption (g)

Rows: Sex Columns: Type of Fat						
	Fresh	Rancid	All			
Female	642.7	*	*			
Male	*	535.3	615.5			
All	669.2	*	597.8			

- a) Give the name of the experimental design used in the above study? What are the two factors? What is the number of levels for each factor? How many are the treatment combinations? What is the number of replicates for each treatment? What is the total number of observations?
- b) In Analysis of Variance table above replace the asterisks in the columns with the appropriate values for the degrees of freedom and the appropriate F-values.
- c) Calculate the missing means in the Treatment Means table above and draw a response plot. What does the response plot suggest?
- d) Using the ANOVA output in the Analysis of Variance table above, including the missing F-values calculated in b) above, carry out significance tests to determine whether there is any effect of Fat Type, Sex or the interaction between the two on the amount of food consumed by a rat. Use the p-value if it is available and critical values otherwise.
- e) Is it appropriate to calculate a Least Significant Difference (LSD) for any of the sources of variation to test for differences among the respective treatment means in Table 10.3 above? Justify your answer.

In his paper (Quinn GP (1988) Ecology of the intertidal pulmonate limpet *Siphonaria diemenensis* Quoy et Garmard. II Reproductive patterns and energetics. *Journal of Experimental Marine Biology and Ecology* 117:137-156), the author investigated the effects of adult density and season on egg mass production by intertidal limpets. Quinn manipulated adult density by making enclosures with 6, 12 or 24 individuals. Studies were carried out during two seasons: spring and summer along the lower shoreline. The data are presented in the table below.

Dulu Off III	<u>nper egg n</u>	<u>11433 (9) k</u>	by season and adult density	
Rows: SE	ASON C	olumns:	DENSITY	
	6	12	24	
spring			0.667 0.667 0.750	
summer	3.830	3.330 2.580 2.750	2.540 1.830 1.630	

Data on limpet egg mass (g) by season and adult density

The data were analysed using analysis of variance. The computer output of this analysis is in the table below. Some of the numbers have been replaced by asterisks.

- a) What is the name of the experimental design used by Quinn in the above study? What are the two factors? What is the number of levels for each factor? How many are the treatment combinations? What is the number of replicates for each treatment combination? What is the number of replicates for each treatment combination? What is the total number of observations?
- b) In the ANOVA table below replace the asterisks in the columns with the appropriate values for the degrees of freedom (DF), the mean square (MS) and the F-statistic, using the same precision as for the available values in the respective column.

Analysis of variance for limpet egg mass (g)									
Source	DF	SS	MS	F	P				
DENSITY	2	4.0019	*	13.98	*				
SEASON	*	17.1483	17.1483	119.85	0.000				
DENSITY*SEASON	*	1.6907	0.8454	*	0.016				
Error	*	1.7170	0.1431						
Total	17	24.5580							

Treatment Means for limpet egg mass (g)

Rows:	SEASON	ON Columns:		DENSIT	Y
		6	12	24	All
spring	g 1.	111	1.111	0.695	0.972
summe	r 3.	887	2.887	2.000	2.924
All	2.	499	1.999	1.347	1.948

- c) Use the means in Treatment Means table above to draw a response plot. What evidence for interaction between season and density does the response plot provide?
- d) Using the output in the ANOVA table above, including the missing F-statistic calculated in b) above, carry out hypotheses tests for any effect of Density, Season or the interaction between the two on limpet egg mass. Use the p-value if it is available and critical values for F otherwise.
- e) Calculate any appropriate Least Significant Difference (LSD) to test for differences among the appropriate means in the Treatment Means table above. Summarise your results in a couple of sentences.

<u>9</u>

A sociology student interested in our TV watching habits carried out a survey for his final year project. His data on the duration of TV watching per week (h) in relation to age group and gender is presented in the table below.

Duration of TV watching per week (h) by age group and gender; F: female, M: male; age group intervals are given in years

group intervals are given in years										
Rows:	Gender	Colu	mns:	Age	e Group					
	20-25	26-55	56+							
F	25	32	44							
	21	26	45							
	27	33	50							
	26	33	43							
	31	28	51							
М	20	23	33							
	27	21	34							
	20	24	38							
	22	28	33							
	28	26	37							

a) Use the table above to answer the following questions. What experimental design did the student use in his study? What are the two factors involved? How many levels does each factor have? What is the number of treatment combinations? How many replicates did the student use for each treatment combination? What is the total number of observations he collected?

The data were analysed using analysis of variance. The computer output of this analysis is in the table immediately below. One p-value has been replaced by an asterisk.

Analysis of variance (ANOVA) for TV watching per week (h)								
Source	DF	SS	MS	F	P			
Age Group	2	1486.87	743.43	69.48	0.000			
Gender	1	340.03	340.03	31.78	0.000			
Age Group*Gender	2	103.27	51.63	4.83	*			
Error	24	256.80	10.70					
Total	29	2186.97						

Treatment Means for duration of TV watching per week (h)

Rows:	Gender	Colum	ns: Age	Group
	20-25	26-55	56+	All
F	26.00	30.40	46.60	34.33
М	23.40	24.40	35.00	27.60
All	24.70	27.40	40.80	30.97

- b) Use the means in the Treatment Means table above to draw a response plot. What evidence for interaction between Gender and Age Group does the response plot provide?
- c) Using the output in the ANOVA table above, draw conclusions from hypothesis tests for any effect of Age Group, Gender, and the interaction between the two on the duration of TV watching per week (h). Use the p-value if it is available and critical values for F otherwise.
- d) Calculate any appropriate Least Significant Difference (LSD) to test for differences among the appropriate means in the Treatment Means table above. Summarize your results in a couple of sentences.

Headache sufferers are frequently sensitive to noise even when not suffering headache. One hypothesis put forward was that learning to relax might make a subject able to tolerate louder noise but that this might not be effective for all types of headache sufferer. Two groups of 22 subjects were chosen. One group comprised people suffering from migraine headaches (MH). The other group comprised people suffering from tension headaches (TH). Half of each group (11 subjects) were picked at random and were given relaxation training (RT). The other half received no treatment (NT). Each subject then listened to a tone gradually increasing in volume. The level of volume at which the subject found the tone unpleasant was recorded as score.

Rows	: head	ache	Columns: treatment
	RT	NT	
MH	5.70	2.80	
	5.63	2.20	
	4.83	1.20	
	3.40	1.20	
	7.20	0.43	
	1.40	1.78	
		3.50	
		0.64	
		0.95	
	2.00		
	1.56	0.83	
TH	2.70	2.10	
	4.65	1.42	
	5.25	4.98	
	3.78		
		2.44	
	3.27	3.20	
		1.71	
	5.12		
	2.31		
	1.36		
	1.11	4.01	
Cell	Conte	nts: s	core

Raw data on score in relation to type of headache and type of treatment

- a) Describe the experimental design.
- b) Use the MINITAB output in the ANOVA table below to test whether there is evidence of interaction between headache type and treatment.
- c) Use the MINITAB output in the ANOVA table to complete the table of means below.

		Treatment type		
		RT	NT	Overall Mean
Headache	MH			
type	TH			
	Overall Mean			

- d) Draw the response plot for the interaction between headache type and treatment.
- e) Calculate the appropriate LSD for comparing the means for interaction.
- f) Explain what conclusions could be drawn about the hypothesis put forward on the basis of the results from the study.

Analysis of variance (ANOVA) for score

MTB > ANOVA 'score' = 'headache' 'treatment' 'headache'*'treatment'; SUBC> Means 'headache' 'treatment' 'headache'*'treatment'. Analysis of Variance for score Source DF SS MS F P headache 1 0.001 0.001 0.000 0.982 treatment 1 43.960 43.960 18.24 0.000 headache*treatment 1 11.960 11.960 0.032 Error 40 96.390 2.410 Total 43 152.312 Means	Analysis									
Analysis of Variance for score Source DF SS MS F P headache 1 0.001 0.001 0.00 0.982 treatment 1 11.960 11.960 18.24 0.000 headache*treatment 1 11.960 11.960 4.96 0.032 Error 40 96.390 2.410 70tal 43 152.312 Means H 22 2.9855 7H 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 11 4.5064 Me RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745										
Source DF SS MS F P headache 1 0.001 0.001 0.00 0.982 treatment 1 43.960 43.960 18.24 0.000 headache*treatment 1 11.960 11.960 4.96 0.032 Error 40 96.390 2.410 70 70 70 Total 43 152.312 70 70 70 70 70 Means	SUBC> Mean	is 'headac	he' 'tre	atment' 'he	eadache'*'	reatmen	t'.			
Source DF SS MS F P headache 1 0.001 0.001 0.00 0.982 treatment 1 43.960 43.960 18.24 0.000 headache*treatment 1 11.960 11.960 4.96 0.032 Error 40 96.390 2.410 7 7 7 Total 43 152.312 152.312 152.312 152.312 152.312 Means 1 22 2.9855 1 22 2.9964 treatment N score Score Score 1 1 headache treatment N score Score Score Score Score MH 22 3.9905 Score Score Score Score Score Score MH NR 11 4.5064 Score Score Score Score Score Score Score Score Score Score </td <td>Analysis o</td> <td>of Varianc</td> <td>e for so</td> <td>ore</td> <td></td> <td></td> <td></td> <td></td> <td></td>	Analysis o	of Varianc	e for so	ore						
headache 1 0.001 0.001 0.00 0.982 treatment 1 43.960 43.960 18.24 0.000 headache*treatment 1 11.960 11.960 4.96 0.032 Error 40 96.390 2.410 70 70 70 Total 43 152.312 70 70 70 70 70 Means	Analysis O	or varianc	e iui sc	.016						
treatment 1 43.960 43.960 18.24 0.000 headache*treatment 1 11.960 11.960 4.96 0.032 Error 40 96.390 2.410 4.96 0.032 Total 43 152.312 2.410 4.96 0.032 Means Means Score Score Score Score MH 22 2.9855 Score Score Score RT 22 2.9964 Score Score Score NT 22 1.9914 Score Score Score Meadache treatment N score Score Score MH RT 11 4.5064 Score MH NR 11 1.4645 Score MH NR 11 1.4645 Score MH NR 11 3.4745 Score	Source		DF	SS	MS	F	P			
headache*treatment 1 11.960 11.960 4.96 0.032 Error 40 96.390 2.410 96.390 10 Means 43 152.312 10 10 10 Means score score 10 10 10 10 headache N score score 10 10 10 treatment N score 1.9914 11 1.9914 headache treatment N score 11 1.4645 MH NR 11 1.4645 11 3.4745	headache		1	0.001	0.001	0.00	0.982			
Error 40 96.390 2.410 Total 43 152.312 Means headache N score MH 22 2.9855 TH 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	treatment		1	43.960	43.960	18.24	0.000			
Total 43 152.312 Means	headache*t	reatment	1	11.960	11.960	4.96	0.032			
Means headache N score MH 22 2.9855 TH 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	Error		40	96.390	2.410					
headache N score MH 22 2.9855 TH 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	Total		43	152.312						
headache N score MH 22 2.9855 TH 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745										
MH 22 2.9855 TH 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	Means									
MH 22 2.9855 TH 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	headache	N	score							
TH 22 2.9964 treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745										
treatment N score RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745										
RT 22 3.9905 NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	111	22	2.9901							
NT 22 1.9914 headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	treatment	Ν	score							
headache treatment N score MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	RT	22	3.9905							
MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745	NT	22	1.9914							
MH RT 11 4.5064 MH NR 11 1.4645 TH RT 11 3.4745										
MH NR 11 1.4645 TH RT 11 3.4745	headache t	reatment								
TH RT 11 3.4745	MH	RT	11	4.5064						
	MH	NR	11	1.4645						
TH NT 11 2.5182	TH	RT	11	3.4745						
	TH	NT	11	2.5182						