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Digital meters [ammeters/voltmeters]

‘The uncertainty can be taken as being = the smallest measurable division. Strictly this is often

too accurate as manufacturers will quote as bigger uncertainty. [e.g. 2% + 2 divi

Thermometers

Standard -10 °C to 110 °C take precision as 1°C

Digital thermometers uncertainty could be = 0.1°C. However the actual uncertainty may be
greater due to difficulty in reading a digifal scale as an object is being heated o cooled, when
the substance is not in thermal equilibrium with itself et alone with the thermometer.
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The period of oscillation of a Pendulum /Spring

The resolution of a stop watch, used for measuring a periad, is usually 0.01s. Reaction fime
would increase the uncertainty and, although in making measurements on oscillating
quantities it is possible to anticipate, the uncertainty derived from repeat readings is likely to
be of the order 0f 0.1 5. To increase accuracy, often 10 (or 20) oscillations are measured. The
absolute error in the period [i.c. time for a single oscillation] is then 1o (or 'z respectively)
of the absolute error in the time for 10 (20) oscillations

eg. 20 oscillations: Time = 15.8= 0.1 s [0.6%]

158401

20

= Period 0790 = 0.005 s

Note that the percentage uncertainty, p, in the period s the same as that in the overall time
. 01 0
Tnthis case, p= - x100%=0.6% (1 s£)
s

Digital vernier callipers/micrometer
Precision smallest measurable quantity usually = 0.0lmm
Measuring cylinder / beakers/ burette

Smallest measurable quantity e.g. = 1 cny’, but this depends upon the scale of the instrument

In the case of measuring the volume using the line on a beaker, the estimated uncertainty is
likely to be much greater.

Note candidates must be careful to avoid parallax when taking these measurements, and
should state that all readings were taken at eye level. They should alsa measure to the bottom
of the meniscus
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Determining the uncertainties in derived quantities.

Please note that candidates entered for AS award will now be required to combine
percentage uncertaintics.

Very frequently in Physics, the values of two or more quantities are measured and then these
are combined to determine another quantity; e.g. the density of a material is determined using
the equation:

m

Py
To do this the mass, m, and the volume, ¥, are first measured. Each has its own estimated
uncertainty and these must be combined to produce an estimated uncertainty in the density.
The volume itself may have been determined by combining several independent quantity
Geterminations [¢.g. length, breadth and height for a rectangular solid or length and diameter
for a cylindrical wire].

In most cases, quantities are combined cither by multiplying or dividing and this will be
considered first. Multiplying by a constant, squaring (e.g. in 1707, square rooting or raising
to some other power are special cases of this and will be considered next.

1. Multiplying and dividing:
The percentage uncertainty in a quantity, formed when two or more quantities are
combined by either multiplication or division, is the sum of the uncertainties in the
quantities which are combined.

Example

The following results were obtained when measuring the surface area of a
glass block with a 30cm rule, resolution 0.1cm
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Length: R %xlco% =1.0%

Width P :%xloo"/ 2%

So the percentage error in the volume, Py =1.0+22=3.2%
Hence surface area=9.7 x 44=4268 cm*+3.2%

The absolute error in the surface area is now 3.2% of 42.68 = 1.37 cm?
Quoted to 1 sig. fig. the uncertainty becomes 1 cm?®

The comrect result, then, is 43 % lom? - Note that surface area is expressed fo a
number of significant figures which fits with the estimated uncertainty.

2. Raising to a power (eg ¥, %, Vx )

The percentage uncertainty in " s n times the percentage uncertainty inx.
e.g.a period (7) is as being 31 seconds with a percentage uncertainty of 2 %,
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SoT* =961 = 4%
4% x 961 =40 (to 1.5.9)
So the period is expressed as T=960 = 40

Note: ™ is the same as 'x. So the percentage uncertainty in */x is the same as that in x.
Can you see why we ignore the ~sign?
Note: the percentage uncertainty in

is half the percentage uncertainty in x.

3. Multiplying by a constant
In this case the percentage uncertainty is unchanged. So the percentage uncertainty in
3x 0r 0.5 or 7 x is the same as that in x.

Example: The following determinations were made in order to find the
volume of a piece of wire:

Diameter: d=1.22£0.02 mm

Length: [=9.6=0.1 cm

The percentage uncertainties are: p; = 1.6%; p;= 1.0%.

o ) ) ) o
Working in consistent units, and applying the equation V:”Tz, we have:
V'=4489 mm’
The percentage uncertainty, py = 1.6 X 2+1.0=42%=4% (to 1 5.£)
[Note that 7 and 4 have 1o uncertainties.]
So the absolute uncertainty u =448.9 x 0.04 =17.956 =20 (1 s.£)

So the volume is expressed as V= 450 = 20 mnr’
Multiply the percentage uncertainty

4. Adding or subtracting quantities [A2 only]
T£7 quantities are added or subtracted the ahsolute uncertainty is added This situation
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does not anse very frequently as most equations involve multiplication and division
only. The em.£ / p.d. equation for a power supply is an exception.

In all cases, when the final % uncertainty is calculated it can then be converted back ta an
absolute uncertainty and quoted 1 sig. figure. The final result and uncertainty should be
quoted to the same number of decimal places
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Notes for purists:

1. When working at a high academic level, where many repeat measurements are taken,
scientists often use “standard error” £ , aka. “standard uncertainty”. Where this is used,
the expression xo% & is taken to mean that there is a 67% probability that the value of x is
in the range % —€ to %+ £ , a 95% probability that it lies in the range x—2¢ to
X0+ 2¢ , a 98% prabability that it is between % —3¢ and % + 3¢ , etc. Our work on
uncertainties will not invlve this high-level approach.

2. The method which we use here of estimating the uncertainty in an individual quantity takes
1o account of the number of readings. This is because it is expected that only a small
number of readings will be taken. Detailed derivation of standard uncertainties (see above)
invlves taking the standard deviation of the readings and then dividing this by vai—1 , s0
taking 10 readings would involve dividing & by 3

3. The above method of combining uncertainties has the merit of simplicity but it is unduly
pessimistic. If several quantifies are combined, it is unlikely that the actual error (sic) in all
of them is in the same direction, ic. all + or all = Hence adding the percentage
uncertainties overestimates the likely uncertainty in the combination. More advanced work

involves adding uncertainties in quadrature: i.e. p=y 7+ £ + 7 +... . This is normally
done when standard uncertainties are employed (note 1 above)

Itis not intended that candidates pursue any of these courses!
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GRAPHS [derivation of uncertainties from graphs is only expected in A2]

The follawing remarks apply to linear graphs:

The points should be plotted with error bars. These should be centred on the plofted point and
have a length equal 0 i ~Yis [for uncertainties in the y values of the points]. If identical
results are obtained the precision of the instrument could be used. If the error bars are too
small to plot this should be stated.

If calculating a quantity such as gradient or intercept the stecpest line and a least stecp line
should be drawn which are consistent with the error bars. It is often convenient fo plot the
centroid of the points to help this process. This is the point (%3] , the mean x value against

the mean y value. The steepest and least steep lines should both pass through this point.

The maximum and minimum gradients, e, and 7l [OF MMEICEPTS, G and Ce] can now
be found and the results quoted as:

Pl Pl
T

gradient =

intercept =

Scales

Graph should cover more than % of the graph paper available and awkward scales [e.g
multiples of 3] should be avoided. Rofation of the paper through 7 /4 [90° 1] may be
employed to give better coverage of the graph paper.
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Semi-log and log-log graphs [A2 only]

Students will be expected to be familiar with plofting these graphs as follows:
Semi-log: to investigate relationships of the form: = kd

Loglog:

Taking logs: log y=log k+ ¥loga or Iny=In k+ xin a [It doesn't matter which]
Soaplotof logy against x has 2 gradient loga and an intercept logk

‘Examples: Radioactive or capacitor decay, oscillation damping

to investigate relationships of the form: )= Af

Taking logs: 10g y=log 4+ 7i0g X [or the equivalent with natural logs]

So aplot of logy against logxhas a gradient » and an intercept log 4

Examples: Cantilever depression or oscillation period as a function of everhang
length, Gallilean moon periods against orbital radius to test relationship.

Note that Log-log or semi-log graph paper will not be required

Uncertainties from Log graphs: Candidates will not be expected to include error bars in log

plots
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Prac

Context

Density of regular solids [cuboids, cyliners]
Identification of material using density.

Use of metre rule, callpers, micrometer,
‘balance
Initial work on uncertainties

Density of liquids and irregular solids

Use of measuring cylinders

Weighing a rule by balancing a loaded ule

Use of P of M

“Acceleration of a trolley on a ramp [lots of
varians here]

Use of cquations of motion — graphs o
determine acceleration

Determination of g by simple pendulum

NB. Not on spec but a useful o fo
oscillation period measurements

Tnvestigation of a compound pendulum or a | Difto
pin and pendulum
1-V characteristics of diodes, lamps etc Use of ammeters, voltmeters, variable

resistors, potentiometers [pots]

Tdentification of the material of a wire by
determination of its resistivity

Various ways - single measurements | R
against I Uncertainty combinations

Variation of resistance with temperature for a
‘metal wire [copper is good] and/or thermistor

Thermistor not on spec but it doesn't mafter
here. Could tic in with potential dividers to
design a temperature sensor.

Determination of resistance of a volmeter by
use of a series resistor

Tnvestigation of currents in series and parallel
circuits

Dewrmination of intemal resismnce of a
power supply

Direct use of ¥'= E —Jr or use of
11, v
V E ER
work.

- use of reciprocals in graphical

Sonometer — variation of frequency with,
length — determination of the speed of
transverse waves on the metal wire

Use of recipracals in graphical work
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Measurement  of the wavelength of
microwaves by standing waves

Measurement  of the wavelength of
microwaves by Dauble slit (or Lloyd’s
mirror)

Measuwrement of wavelength of a laser by
Young’s slits

Measurement of wavelength of a lasar
pointer using a diffraction eratins

Measurement of refractive index of glass or
water by real and apparent depth

Measure refractive index of a semicircular
lass block using ray box [or pins!]

Measurement of the speed of sound in air
using 2 double beam CRO and two
‘microphones
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Section 3 - Experimental techniques

The following is a selection of experimental techniques which it is anticipated that candidates
will acquire uring their AS and A2 studies. It is not exhaustive, but is intended to pravide
some guidance into the expectations of the PH3 and PHS experimental fasks

Measuring instruments
The use of the following in the context of individual experiments:
* micrometers and callipers. These may be analogue or digital It is intended that
candidates will have experience of the use of these instruments with a discrimination of at
least 0.01 mm. A typical use is the determination of the diameter of a wire.
« digital top-loading balances
*  measuring cylinders and burettes. This is largely in the context of volume and density
determination.
* force meters (Newton meters).
*  stop watches with a discrimination of 0.01 s. It is alsa convenient fo use stopwaiches
clocks with a discrimination of 1 s
* rules with a discrimination of 1 mm,
* digital multimeters with volfage, current and resistance ranges. The following (d.c.)
ranges and discriminations illustrative the ones which are likely to be useful:
2V 0001V

20V 001V
104 001 A
24 0001 A
2kQ 19

2000 001 Q

Students should be familiar with the technique of starting readings on a high range to
protect the instrument

* liquidin glass thermometers. -10 ~110°C will normally suffice, though candidates can
be usefully infroduced to the advanmges of restricted range thermometers. Where
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appropriate, digital temperature probes may be used.
Experimental techniques

The purpose of PH3 is fo test the ability of the candidates to make and interpret
‘measurements, with special emphasis on:
* combining measurements to determine derived values, eg densify or internal
resistance
* estimating the uncertainty in measured and derived quantities
« investigating the relationships befween variables

These abilities will be developed by centres, using all the content of PH1 and PH2. They can
and will be assessed using very simple apparatus which can be made available in multiple
quantities. Hence it is not foreseen that apparatus which centres are likely fa possess in small
mumbers, if at all, will be specified, ¢.g. oscilloscopes, data loggers, travelling microscapes

The following list may be found useful as a checklist. Candidates should be familiar with the
following techniques:
« connecting voltmeters across the p.d. o be determined, ic. in parallel;
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connecting ammeters so that the current flows through them, ie. in series;
the need ta avoid having power supplies in circuits when a resistance meter is being
employed;

taking measurements of diameter at various places along a wire / cylinder and taking
pairs of such measurements at right angles to allow for nen-circular cross sections;
determining 2 small distance measurement, e.g. the thickness or diameter of an object,
by placing a number of identical objects in contact and measuring the combined
value, e.g. measuring the diameter of steel spheres by placing 5 in line and measuring
the extent of the 5;

the use of potentiometers (N.B. not mefre wire potentiometers) and variable resistors
in circuits when investigating current-volage characteristics;
the determination of the periad and frequency of an oscillating object by determining
the time taken for a number of cycles [typically 10 or 20J; N.B. Although the concept
of period is not on the AS part of the specification, it is likely o be used in PH3;

the use of fiducial marks and no-parallax in sighting against scales and in periad
determinations
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Guidance notes on experimental work.

Section 1 - Treatment of uncertainties in Physics at AS and A2 level
Preamble

One of the main aims of the practical work undertaken in GCE Physics is for candidates to
develop a feeling for uncertainty in scientific data. Some of the treatment that follows may
appear daunting. That is not the intention. The estimates of uncertainties that are required in
this specification are mare in the natwe of educated guesses than swstically sound
calculations. It is the intention that candidates be intraduced early in the course to estimating
uncertainties so that by the time their work is assessed, they have a relaxed aftifude to it. The
sections in PH1 on density determinations and resistivity are ideal for this

Definitions
Uncertainty
Uncertainty in measurements is unavoidable and estimates the range within which the answer
is likely to lie. This is usually expressed as an absolute value, but can be given as a
percentage.

The normal way of expressing a measurement x, with ifs uncertainty, u, is x = u. This means
that the true value of the measurement is likely to lie in the range % —u to xa + 1.

Note: The term “error” is used in many textbooks instead of uncertainty. This term implies
that something has gone wrong and is therefore best avoided.

Uncertainies can be split up into two different categories:

- Random uncertainties — These occur in anv measured quantity. The uncertainty of
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each reading cannot be reduced by repeat measurement but the more measurements
which are taken, the closer the mean value of the measurements is likely to be fo the
“true” value of the quantity. Taking repeat readings is therefore a way of reducing the
effect of random uncertainties

- Systematic uncertainties - These can be due to a fault in the equipment, or design of
the experiment e.g. possible zero error such as net taking inta account the resistance
of the leads when measuring the resistance of an electrical component or use of a ruler
at a different temperature from the one at which it is calibrated. The effect of these
cannot be reduced by taking repeat readings. If a systematic uncertainty s suspected,
it must be tackled either by a redesign of the experimental technique or theoretical
analysis. An example of this sort of uncertainty, the origin of which remains
mysterious, is in the determination of stellar distances by parallax. The differences
between the distances, as determined by different observatories, often exceeds the
standard uncertainties by a large margin.

Percentage uncertainty
This is the absolute uncertainty expressed as a percentage of the best estimate of the true
value of the quantity.

Resolution
This is the smallest quantity to which an instrument can measure
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Mistake
This is the misreading of a scale o faulty equipment.

Suspect results

These are results that lic well outside the nomal range e.g. points well away from a line or
curve of best fit. They often arise from mistakes in measurement. These should be recorded
and reason for discarding noted by the candidate.

‘How is the uncertainty in the measurement of a quantity estimated?

1. Estimation of uncertainty using the spread of repeat readings.
Suppose the value 2 quantity x is measured several times and a series of different
values obtained:
1, %, T...... %o, [Normally, in our work, 7 will be a small number, say 3 or 5].

Unless there is reason to suspect that one of the results is seriously out [ic. it is
anomalous], the best estimate of the true value of x is the arithmetic mean of the

readings:

Fr oyt x

Mean value x 3
n

A reasonable estimate of the uncertainty is % the range:

fe e Tmsms
2
 [ignoring any anomalous readings]

, Where ¥, is the maximum and Xy, the minimum reading of

Example
The following results were obtained for the time it took for an object to roll down a
slope

455,485 465,515,505
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- _45+48+46+51+50
5

48s

51-45
The uncertainty, u, i given by: u="" "~ =035

The final answer and uncertainty should be quoted, with unis, to the same no. of
decimal places and the uncertainty to 1 sig. fig

ie.(=4803s
Note that, even if the inifial results had be taken to the nearest 0.01 s, ic. the
resolution of an electronic stopwatch, the final result would still be given to 0.1 s
because the first significant figure in the uncertainty is in the first place after the
decimal point.

03
The percentage uncertainty, p =, T x100% =6% . Again, p s only expressed to 1 5.6

2. Estimation of uncertainty from a single reading

Sometimes there may only be a single reading. Sometimes all the readings may be
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identical. Clearly it cannot be therefore assumed that there is zero uncertainty in the
reading(s).

With analogue instruments, it is not expected that interpolated readings will be faken
between divisions (this is clearly not possible with digital instrument anyway). Hence,
the uncertainty cannot be less than % the smallest division of the instrument being
used, and is recommended it be taken to be = the smallest division. In some cases,
however, it will be larger than this due to other uncertainties such as reaction time
[see later] and manufacturer’s uncertainties. If other sources of random uncertainty
are present, it is expected that in most cases repeat readings would be taken and the
uncertainty estimated from the spread as above.

Advice for Specific apparatus
Metre Rule

Take the resolution as =1 mm. This may be unduly pessimistic, especially if care is taken to
aveid parallax emors. It should be remembered that all length measurements using rules
actually involve two readings — one at each end — both of which are subject to uncertainty. In
many cases the uncertainty may be greater than this due to the difficulty in measuring the
required quantity, for example due to parallax or due to the speed needed to take the reading
e.g. rebound of a ball, in which case the precision could be = 1 cm. In cases involving
transient readings, it is expected that repeats are taken rather than relying on a guess as to the
nertainty.

Standard Masses
For 20g, 50g, 100g masses the precision can be taken as being as being <1g this is probably

more accuae than the mamifacturer’s [ofien about 3%]. Alternatively, if known, the
‘manufacturer’s uncertainty can be used.





