AQA Core 12016 Unofficial Mark scheme (Dan O'F.)

Disclaimer: The marks for each question are accurate but as to where they are allocated exactly is only an estimate based on the responses to previous papers. FT/ECF (Using a wrong answer from previous question part that will still allow you to earn method marks) has not been included as their use is difficult to gauge. Please bear in mind that FT/ECF could allow you to gain additional marks. A grade range estimate is shown below, based on previous years and the difficulty of the paper:
A: 60-64
D: 43-46
B: 55-58
E: 37-40
C: 50-52

Q1	Question	Solution	Mark	Total
(a)	Find ' m ' from $5 x+3 y+3=0$	$\begin{aligned} & 3 y=-5 x-3 \\ & \therefore y=-\frac{5}{3} x-1 \\ & \therefore \mathrm{~m}=-\frac{5}{3} \end{aligned}$	M1 A1	2
(b)	AB \& another line intersect at B, Find co-ordinates of B.	$5 x+3 y+3=0 \&$ other equation identified as simultaneous equation. $\begin{aligned} & X=-3 \\ & \text { Or } y=4 \end{aligned}$	M1 A1	
		$B=(-3,4)$	A1	3
(C)	Co-ordinates involving K [e.g. ($2 \mathrm{k}-3, \mathrm{k}+4$) or whatever it was]on the line, Find K.	$\begin{aligned} & \text { When } x=(\text { e.g. })(2 k-3) \\ & y=(\text { e.g. })(k+4) \\ & \Rightarrow 5(2 k-3)+3(k+4)+3=0 \\ & \Rightarrow K=-30 \end{aligned}$	M1 A1	2
		Total		7

Q2	Question	Solution	Mark	Total	Comments
(a)	Simplify $(3 \sqrt{5})^{2}$	$\therefore=(3 \times 3) \times(\sqrt{5} \times \sqrt{5})$ $\therefore=9 \times 5$ $\therefore=45$	B1	1	
(b)Simplify $\frac{(3 \sqrt{5})^{\wedge} 2+\sqrt{5}}{7+3 \sqrt{5}}$ with your answer in the form m + n $\sqrt{5}$	$\frac{\left(3 \sqrt{5} \wedge^{\wedge} 2+\sqrt{5}\right.}{7+3 \sqrt{5}} \times \frac{7-3 \sqrt{5}}{7-3 \sqrt{5}}$ Numerator $=300-128 \sqrt{5}$ Denominator $=4$	M1	M1		45 correctly subbed in' from part a)
$\therefore=75-32 \sqrt{5}$	M1	A1	4		

\begin{tabular}{|c|c|c|c|c|c|}
\hline Q5 \& Question \& Solution \& Mark \& Total \& Comments \\
\hline (a) \& Centre C \((5,-3)\) given and \(\mathrm{A}(-2,1)\). Write the equation of the circle in form
\[
(x-a)^{2}+(y-b)^{2}=k
\] \& \begin{tabular}{l}
Use co-ordinates of C to obtain \((x-5)^{2}+(y+3)^{2}=k\) \\
Use Pythagoras' theorem to obtain k, as demonstrated below. \(\left(4^{2}+7^{2}=r^{2}=k\right)\) \\
Obtain \((x-a)^{2}+(y-b)^{2}=65\)
\end{tabular} \& M1
M1

A1 \& 3 \& | Use knowledge that $\mathrm{C}=(-\mathrm{a},-\mathrm{b})$ from $(x-a)^{2}+$ $(y-b)^{2}=r^{2}$ |
| :--- |
| Do NOT allow r ,or, $k=\sqrt{65}$ |
| Fully correct equation in completed square form. |

\hline (b) \& Points A \& B form the diameter. Find the co-ordinates of B. \& | For B, $x=5+7$ |
| :--- |
| OR $y=(-3)-4$ $\therefore \mathrm{B}=(12,-7)$ | \& | M1 |
| :--- |
| A1 | \& 2 \& | Use the distance from C to A to find the distance from C to B. |
| :--- |
| (Probably!) Doesn't have to be in co-ordinate brackets. |

\hline (c) \& Calculate the equation of the tangent at A. (In form

$$
\mathrm{px}+\mathrm{qy}+\mathrm{n}=0)
$$ \& \[

$$
\begin{aligned}
& \text { Grad of radius (normal) } \\
& =\frac{1+3}{-2-5} \\
& \therefore=-\frac{4}{7} \\
& \therefore \text { gradient of tangent }=\frac{-1}{\frac{-4}{7}} \\
& =\frac{7}{4} \\
& \therefore y-(1)=\frac{7}{4}(\mathrm{x}+2) \\
& \therefore 7 \mathrm{x}-4 \mathrm{y}+18=0
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| M1 |
| M1 |
| A1 | \& 5 \& | Allow $\mathrm{y}=m \mathrm{x}+c$ method. |
| :--- |
| Must be in this form for A1. |

\hline
\end{tabular}

(d)	Given that T is on tangent at A \& length of AT = 4, find Length of CT.	Identify that $\begin{aligned} & \mathrm{CT}^{2}=\mathrm{CA}^{2}+\mathrm{AT}^{2} \\ & \therefore \mathrm{CT}^{2}=65+4^{2} \end{aligned}$ $\begin{aligned} \therefore \mathrm{CT}^{2} & =81 \\ \therefore \mathrm{CT} & =\mathrm{V} 81 \\ & =9 \end{aligned}$	M1 M1 A1	3	Use of Pythagoras. Must simplify V81 to 9 for A1.
		Total		13	

