AQA Core 1 2016 Unofficial Mark scheme (Dan O'F.)

Disclaimer: The marks for each question are accurate but as to where they are allocated exactly is only an estimate based on the responses to previous papers. FT/ECF (Using a wrong answer from previous question part that will still allow you to earn method marks) has not been included as their use is difficult to gauge. Please bear in mind that FT/ECF could allow you to gain additional marks. A grade range estimate is shown below, based on previous years and the difficulty of the paper:

A: 60-64	D: 43-46
B: 55-58	E: 37-40
C: 50-52	

Q1	Question	Solution	Mark	Total
(a)	Find 'm' from 5x + 3y + 3 = 0	3y = -5x - 3 $\therefore y = -\frac{5}{3}x - 1$	M1	
		\therefore m = $-\frac{5}{3}$	A1	2
(b)	AB & another line intersect at B, Find co-ordinates of B.	5x + 3y + 3 = 0 & other equation identified as simultaneous equation.	M1	
		$\begin{array}{l} X = -3 \\ \mathbf{0r} y = 4 \end{array}$	A1	
		B = (-3,4)	A1	3
(C)	Co-ordinates involving K [e.g. (2k-3, k +4) or	When $x = (e.g.) (2k-3)$, y = (e.g.) (k+4)		
	whatever it was]on the line, Find K.	$\Rightarrow 5(2k-3) + 3(k+4) + 3 = 0$	M1	
		\Rightarrow K = -30	A1	2
		Total		7

Q2	Question	Solution	Mark	Total	Comments
(a)	Simplify $(3\sqrt{5})^2$				
		∴=45	B1	1	
(b)	Simplify $\frac{(3\sqrt{5})^{2}+\sqrt{5}}{7+3\sqrt{5}}$ with your answer in the form m +	$\frac{(3\sqrt{5})^{2+\sqrt{5}}}{7+3\sqrt{5}} \times \frac{7-3\sqrt{5}}{7-3\sqrt{5}}$	M1		45 correctly 'subbed in' from part a)
	n√5	Numerator = $300 - 128\sqrt{5}$	M1		
		Denominator = 4	M1		
		$\therefore = 75 - 32\sqrt{5}$	A1	4	
		Total		5	

Q3	Question	Solution	Mark	Total	Comments
(a)(i)	Write $x^2 - 7x + 2$ in the form $(x-p)^2 + q$	$(x - \frac{7}{2})^2$ $(x - \frac{7}{2})^2 - \frac{41}{4}$	M1 A1	2	Simplest form but decimals accepted, e.g -3.5 & 20.25
(ii)	Write down the minimum value of the curve.	$-\frac{41}{4}$	B1	1	
(b)	Describe the geometrical transformation that maps the graph of $y = x^2 - 7x + 2$ onto $y = (x-4)^2$	Translation By vector $\begin{pmatrix} \frac{1}{2} \\ \frac{41}{4} \end{pmatrix}$	B1 A1 A1	3	'Translation' = 1 mark Must have fully correct vector for next 2 marks. Word 'vector' can be stated / implied.
		Total		6	

Q4	Question	Solution	Mark	Total	Comments
(a)(i)	Show that $(x+3)$ is a factor of $x^3-5x^2-8x+48$	$P(-3) = (-3)^3 - 5(-3)^2 - 8(-3) + 48$	M1		P (-3) attempted NOT long division.
		∴ = $-27 - 45 + 24 + 48 = 0$ ⇒ (x+3) is a factor	A1	2	Must have statement for A1.
(ii)	Express $x^3 - 5x^2 - 8x + 48$ as a product of 3	$\therefore = (x+3)(x^2-8x+16)$	M1		Division used to obtain 1 linear and 1 quadratic factor of p(x).
	linear factors.	$ \begin{array}{l} \therefore (x^2 - 8x + 16) = \\ (x - 4)(x - 4) \end{array} $	M1		Factorise quadratic for 2 nd M1.
		$\therefore p(x) = (x+3)(x-4)(x-4)$	A1	3	3 linear factors for A1
(b)(i)	Use the remainder theorem to find the remainder when p(x) is divided by (x-2)	P(2) = $2^3 - 5(2)^2 - 8(2) + 48$ ∴ remainder = 20	M1 A1	2	'Sub. in' 2 to polynomial.
(ii)	Express $x^3 - 5x^2 - 8x + 48$ in the form (x-2)	$P(x) = (x-2)(x^2+bx+c)$ where $b = -3$ And	M1		Division used to obtain 1 linear and 1 quadratic factor of p(x).
		c = -14 r = 48-28 = 20 P(x)=	M1		(r could also be obtained from previous question)
		$(x-2)(x^2-3x-14)+20$	A1	3	P(x) expressed in correct form.
		Total		10	

Q5	Question	Solution	Mark	Total	Comments
(a)	Centre C $(5,-3)$ given and A $(-2,1)$. Write the equation of the circle in form $(x-a)^2 + (y-b)^2 = k$	Use co-ordinates of C to obtain $(x-5)^2 + (y+3)^2 = k$ Use Pythagoras' theorem to obtain k, as demonstrated below. $(4^2 + 7^2 = r^2 = k)$	M1 M1		Use knowledge that $C = (-a,-b)$ from $(x-a)^2 + (y-b)^2 = r^2$
		A (-2,1) 4 7 C (5, -3)			Do NOT allow r ,or, $k = \sqrt{65}$
		Obtain $(x-a)^2 + (y-b)^2 = 65$	A1	3	Fully correct equation in completed square form.
(b)	Points A & B form the diameter. Find the co-ordinates of B.	For B, $x = 5 + 7$ OR y = (-3) - 4	M1		Use the distance from C to A to find the distance from C to B.
		∴ B = (12,-7)	A1	2	(Probably!) Doesn't have to be in co-ordinate brackets.
(c)	Calculate the	Grad of radius (normal)	M1		
	equation of the tangent at A. (In form px + qy + n = 0)	$=\frac{1+3}{-2-5}$ $\therefore = -\frac{4}{7}$	M1		
	F	\therefore gradient of tangent = $\frac{-1}{\frac{-4}{7}}$			
		$=\frac{7}{4}$	M1		
		$\therefore y - (1) = \frac{7}{4}(x+2)$	M1		Allow $y = mx + c$ method.
		$\therefore 7x - 4y + 18 = 0$	A1	5	Must be in this form for A1.

(d)	Given that T is on tangent at A & length of AT = 4, find Length of CT.	Identify that $CT^2 = CA^2 + AT^2$ $\therefore CT^2 = 65 + 4^2$ $\therefore CT^2 = 81$ $\therefore CT = \sqrt{81}$ = 9	M1 M1 A1	3	Use of Pythagoras. Must simplify √81 to 9 for A1.
		Total		13	

Q6	Question	Solution	Mark	Total	Comments
(a)(i)	Curve y =8-4x-2x ² is given. Find the x- intercepts of the curve in the form m±√n	When y = 0 $\Rightarrow 8-4x-2x^2 = 0$ $\Rightarrow a = -2, b = -4, c = 8$	M1		Quadratic formula /similar used (not factorising)
		$\Rightarrow x = -1 \pm \sqrt{5}$	A1	2	Must be in this form for A1.
(ii)	Sketch the graph of $y = 8-4x-2x^2$, showing the y-intercept.	8 <u>-1-√5</u> -1+√5	B1 B1	2	-ve (n) shape, max point NOT on y-axis for B1 y intercept & roots stated for 2 nd B1.
(b)(i)	y = k(x+4) meets the curve at a tangent. Hence show that: $2x^{2} + (k+4)x + 4(k-2)$ = 0				
		$\therefore 2x^2 + (k+4)x + 4(k-2) = 0$	A1	1	Must be in this form.
(ii)	Hence find the 2 possible values of k.	Tangent ⇒ $b^2-4ac = 0$ ∴ $(k+4)^2 - [4 \times 2(4k-8)] = 0$	M1		Correct substitution of a, b, c values into
		$\therefore k^2 - 24k + 80 = 0$	M1		discriminant.
		\therefore k = -20 ,or, k = -4	A1	3	
		Total		8	

Q7	Question	Solution	Mark	Total	Comments
(a)(i)	The curve $y = 4 - x^2 - 3x^3$ is	$\frac{dy}{dx} = -2x - 9x^2$	M1 A1		1 term correct All correct
	given. Find the equation of the tangent at P (–2,24)	: when x = -2, $\frac{dy}{dx} = -2(-2) - 9(-2)^2$	M1		Sub in $x = -2$
	giving your answer in the form y = mx + c	\therefore y -24 = -32(x+2)	M1		Sub $\frac{dy}{dx}$ and x & y of P into
	· · · · · ·	$\therefore y = -32x - 40$	A1	5	equation.
(ii)	Find the x co-ordinate of Q.	When $y = 0$			Rearrange to get $y = mx + c$
(1-)(:)		$\Rightarrow -32x - 40 = 0$ $\Rightarrow x = -\frac{5}{4}$	B1	1	Accept -1.25 and $-1\frac{1}{4}$
(b)(i)	Calculate $\int_{-2}^{1} 4 - x^2 - 3x^3 dx$	$\left[\frac{-3x^4}{4} - \frac{x^3}{3} + 4x\right]_{-2}^{1}$	M1 A1		2 terms correct all correct
		$\therefore = \left[4 - \frac{1}{3} - \frac{3}{4}\right] - \left[-8 + \frac{8}{3} - 12\right]$	M1		Attempt to correctly use limits
			A1		Correct, unsimplified
		$=\frac{81}{4}$	A1	5	Accept 20.25 and $20\frac{1}{4}$
(ii)	Hence determine the area of the	Area of triangle (see below) = $\frac{24+\frac{3}{4}}{2} = 9$ (units ²)	B1		
	shaded region bounded by the	$\therefore \text{ shaded area} = \left(\frac{81}{4} - 9\right)$			
	curve between Q & R (1, 0).	T	M1		OE ; accept
		$=\frac{45}{4}$	A1	3	11.25 and $11\frac{1}{4}$
		P(-2,24) Q(-5/4,0)			
		Total		14	

Q8	Question	Solution	Mark	Total	Comments
(a)(i)	The gradient of a curve is given by $\frac{dy}{dx} = 54 + 27x - 6x^2$	$d^2y/dx^2 = 27-12x$	M1 A1	2	1 term correct all correct
()	Calculate d²y/dx²	un 1			dy
(ii)	The curve passes through the point P $(-1\frac{1}{2}, 4)$. Verify that	When $x = -1\frac{1}{2}$ $\Rightarrow \frac{dy}{dx} = 54 + 27(-1\frac{1}{2}) - 6(-1\frac{1}{2})^2$	M1		$Must prove \frac{dy}{dx} = 0 \text{ for } M1$
	there is a minimum point at P.	\Rightarrow stationary point	M1		Must have statement.
		When $x = -1\frac{1}{2}$ $\Rightarrow d^2y/dx^2 = 27 - 12(-1\frac{1}{2})$	M1		Prove $d^2y/dx^2 > 0$
		= 45 > 0 ⇒minimum point (at x = $-1\frac{1}{2}$)	A1	4	Must have statement for A1
(b)(i)	Hence show that, when y is decreasing, $2x^2 - 9x - 18 > 0$	When y is decreasing $\Rightarrow \frac{dy}{dx} < 0$ $\Rightarrow 54 + 27x - 6x^2 < 0$	M1		Attempt to show that $\frac{dy}{dx} < 0$
		$\Rightarrow 6x^2 - 27x - 54 > 0$			Clear that >0. 'Be convinced'
		$\Rightarrow 2x^2 - 9x - 18 > 0$ as req'd	A1	2	Correct inequality.
(ii)	Hence solve $2x^2 - 9x - 18 > 0$	$\therefore (k-6)(2k+3) > 0$	M1		Correct factors / use of quadratic
		∴ Critical values are $k = 6 \text{ and } -\frac{3}{2}$	A1		formula.
		- <u>3</u> - <u>3</u> 6	M1		Use of sign diagram OR graph
		$\therefore k > 6, k < -\frac{3}{2}$	A1		Fraction must be simplified for A1.
		Total		12	