OCR Additional Maths 2016 – Unofficial Mark Scheme			
Q.1	1-2x+6>4x (correct expansion of bracket)	B1	
	7 > 6x	M1	
	$x < \frac{7}{6}$ or $1\frac{1}{6}$	A1	
Q.2	$y = \int (3x^2 - 4x + 2) dx = x^3 - 2x^2 + 2x + c$	M1B1	
	$3 = (1)^3 - 2(1)^2 + 2(1) + c$	M1	
	<i>c</i> = 2		
	$y = x^3 - 2x^2 + 2x + 2$	A1	
Q.3	$3\tan x = 4$	M1	
	$\tan x = \frac{4}{3} \implies x = \tan^{-1} \frac{4}{3}$	M1	
	$x = 53.1^{\circ}$ to 1 d.p. in first quadrant <i>(or awrt 53°)</i>	B1	
	$x = 233.1^{\circ}$ to 1 d.p. in first quadrant (or awrt 233°)	B1	
Q.4	(i) $f(2) = (2)^3 - (2)^2 + (2) - 6 = 0$		
	Hence $(x-2)$ is a factor. (Must draw this conclusion for mark)	A1	
	(ii) $f(x) = (x-2)(x^2 + x + 3)$ by algebraic division or by equating coeffs	B1	
	For $x^2 + x + 3$, $b^2 - 4ac = (1)^2 - 4(1)(3) = -11$	M1B1	
	$b^2 - 4ac < 0$ so the quadratic has no real roots. Hence the cubic only has one root of $x = 2$.	A1	
	(Must draw correct conclusion for mark.)		
Q.5	(i) Smallest length of AB is 11.5 cm	A1	
	(ii) Triangle with sides $AB = 11.5$, $BC = 15.5 \& AC = 20.5 cm$	B1	
	$\cos B = \frac{(11.5)^2 + (15.5)^2 - (20.5)^2}{2(11.5)(15.5)}$ (use of cosine rule to find B)	M1	
	$B = 97.697 = 97.7^{\circ}$ to 3 s.f.	A1	

Q.6 (i) Method 1: Difference in acceleration = 0.5 m/s^2

$$s = ut + \frac{1}{2}at^2 \Rightarrow 100 = \frac{1}{2}(0.5)t^2$$
 M1

B1

M1A1

$$t = 20$$
 seconds

Method 2:

For B: $s = 0 + \frac{1}{2}(2)t^2 = t^2$	
For A: $s = 100 + 0 + \frac{1}{2}(1.5)t^2 = \frac{3}{4}t^2$ (initial position is at $s = 100$)	M1
Sub for <i>s</i> in the second equation: $t^2 = 100 + \frac{3}{4}t^2 \Longrightarrow t = 20$ seconds	B1

Distance travelled by B:
$$s = t^2 = 400 \text{ m}$$
 M1A1

(ii) Speed of B:
$$v = u + at = 0 + (2)(20) = 40 \text{ m/s}$$
 M1A1

Q.7 (i) Triangle PQM is right-angled at P with 45° angles at Q and M.

Hence
$$PQ = PM = 2 \text{ m}$$
 A1

(ii) $PB^2 = MB^2 + PM^2 = 1.5^2 + 2^2 = 2.5^2$ (note this is a 3/4/5 triangle)

$$PB = 2.5 \,\mathrm{m}$$
B1

Angle *BPQ* = 90°, so
$$\tan(PBQ) = \frac{PQ}{PB} = \frac{2}{2.5} = 0.8$$
 M1B1

Hence angle
$$PBQ = 38.659... = 38.7^{\circ}$$
 to 3 s.f. A1

Q.8 (i)
$$(1+\delta)^3 = 1+3\delta+3\delta^2+\delta^3$$

Method mark for expansion using $\binom{n}{r}$ or Pascal's triangle

(ii) For δ < 1, as δ becomes smaller, δ^2 and δ^3 become smaller at an	
even more rapid rate. Hence if δ is sufficiently small, the δ^{2} and δ^{3} terms	
in the expansion can be neglected and $(1+\delta)^3 \approx 1+3\delta$	A1

(iii)
$$1+3\delta - 0.9(1+\delta) - 0.206 = 0$$
 M1

$$2.1\delta = 0.106$$
 B1

$$\delta = 0.05047...$$
 (or awrt 0.050) A1

 $x = 1 + \delta = 1.050... = 1.05$ to 3 s.f. A1