OCR Additional Maths 2016 - Unofficial Mark Scheme

Q. $1 \quad 1-2 x+6>4 x$ (correct expansion of bracket)
$7>6 x$ M1
$x<\frac{7}{6}$ or $1 \frac{1}{6}$ A1
Q. $2 y=\int\left(3 x^{2}-4 x+2\right) d x=x^{3}-2 x^{2}+2 x+c$ M1B1
$3=(1)^{3}-2(1)^{2}+2(1)+c$ M1
$c=2$
$y=x^{3}-2 x^{2}+2 x+2$
Q. $33 \tan x=4$
$\tan x=\frac{4}{3} \Rightarrow x=\tan ^{-1} \frac{4}{3}$ M1
$x=53.1^{\circ}$ to 1 d.p. in first quadrant (or awrt 53°) B1
$x=233.1^{\circ}$ to 1 d.p. in first quadrant (or awrt 233 ${ }^{\circ}$)
B1
Q. 4 (i) $\mathrm{f}(2)=(2)^{3}-(2)^{2}+(2)-6=0$

Hence ($x-2$) is a factor. (Must draw this conclusion for mark)
(ii) $f(x)=(x-2)\left(x^{2}+x+3\right)$ by algebraic division or by equating coeffs

For $x^{2}+x+3, \quad b^{2}-4 a c=(1)^{2}-4(1)(3)=-11$
$b^{2}-4 a c<0$ so the quadratic has no real roots.
Hence the cubic only has one root of $x=2$.
(Must draw correct conclusion for mark.)
Q. 5 (i) Smallest length of $A B$ is 11.5 cm
(ii) Triangle with sides $A B=11.5, B C=15.5 \& A C=20.5 \mathrm{~cm}$
$\cos B=\frac{(11.5)^{2}+(15.5)^{2}-(20.5)^{2}}{2(11.5)(15.5)}$ (use of cosine rule to find B)
$B=97.697 \ldots=97.7^{\circ}$ to 3 s.f.
Q. 6 (i) Method 1: Difference in acceleration $=0.5 \mathrm{~m} / \mathrm{s}^{2}$
$s=u t+\frac{1}{2} a t^{2} \Rightarrow 100=\frac{1}{2}(0.5) t^{2}$
$t=20$ seconds B1

Method 2:

For B: $s=0+\frac{1}{2}(2) t^{2}=t^{2}$
For A: $s=100+0+\frac{1}{2}(1.5) t^{2}=\frac{3}{4} t^{2}$ (initial position is at $s=100$) M1

Sub for s in the second equation: $t^{2}=100+\frac{3}{4} t^{2} \Rightarrow t=20$ seconds B1

Distance travelled by B: $s=t^{2}=400 \mathrm{~m}$
(ii) Speed of B: $v=u+a t=0+(2)(20)=40 \mathrm{~m} / \mathrm{s}$ M1A1
Q. 7 (i) Triangle PQM is right-angled at P with 45° angles at Q and M .

Hence $P Q=P M=2 \mathrm{~m}$
(ii) $P B^{2}=M B^{2}+P M^{2}=1.5^{2}+2^{2}=2.5^{2}$ (note this is a $3 / 4 / 5$ triangle)
$P B=2.5 \mathrm{~m}$
B1
Angle $B P Q=90^{\circ}$, so $\tan (P B Q)=\frac{P Q}{P B}=\frac{2}{2.5}=0.8$
Hence angle $P B Q=38.659 \ldots=38.7^{\circ}$ to 3 s.f.
A1
Q. 8 (i) $(1+\delta)^{3}=1+3 \delta+3 \delta^{2}+\delta^{3}$

M1A1
Method mark for expansion using $\binom{n}{r}$ or Pascal's triangle
(ii) For $\delta<1$, as δ becomes smaller, δ^{2} and δ^{3} become smaller at an even more rapid rate. Hence if δ is sufficiently small, the δ^{2} and δ^{3} terms in the expansion can be neglected and $(1+\delta)^{3} \approx 1+3 \delta$
(iii) $1+3 \delta-0.9(1+\delta)-0.206=0$
$2.1 \delta=0.106$
B1
$\delta=0.05047 \ldots$ (or awrt 0.050)
$x=1+\delta=1.050 \ldots=1.05$ to 3 s.f.

