

W850/R6246/57570 7/7/7/3/3/800

N29264

SECTION A

Answer ALL parts of this question in the spaces provided.

- 1. The following procedure can be used to prepare ethyl ethanoate (boiling temperature 77° C).
 - Mix 20 cm^3 of ethanol (an excess) and 12.6 g of ethanoic acid in a pear-shaped flask.
 - Slowly add 8 cm³ of concentrated sulphuric acid, with cooling and mixing.
 - Heat the mixture under reflux for 15 minutes.
 - Allow the apparatus to cool and then re-arrange it for distillation.
 - Collect everything that distils up to 80 °C.
 - Purify the distillate.
 - (a) Write the equation for the reaction between ethanol and ethanoic acid.

(1)(b) What is the purpose of the concentrated sulphuric acid in this reaction?

(1)

Leave blank

(3)

(c) Draw a diagram to show how you should set up the apparatus to distil the mixture.

(u)	10.6	g of pure ethyl ethanoate was collected.
	Calc	culate the percentage yield of ethyl ethanoate obtained in this experiment.
		(3)
(e)	Eth	ul athemasta con algo he memore different athemal and athemast ships and ships
		yi emanoale can also be prepared from emanol and emanoyi chloride.
	(i)	Write the equation for this reaction.
	(i)	Write the equation for this reaction.
	(i)	Write the equation for this reaction. (1)
	(i) (ii)	Write the equation for this reaction. (1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid.
	(i) (ii)	(1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid.
	(i) (ii)	(1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid.
	(i) (ii)	(1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid.
	(i) (ii)	Write the equation for this reaction. (1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid. (1) (1)
	(i) (ii)	Write the equation for this reaction. (1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid. (1) (1) (1) (1)
	(i) (ii)	Write the equation for this reaction. (1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid. (1) (1) (1) (1) (1)
	(i) (ii)	Write the equation for this reaction. (1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid. (1) (1) (1) (1) (1) (1)
	(i) (ii)	Write the equation for this reaction. (1) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid. (1) (1) (1) (1) (1)

(i)	Explain what makes a solvent suitable for use in this recrystallisation
(1)	Explain what makes a solvent suitable for use in this reerystanisation.
	(1)
(ii)	Explain why the mixture is filtered after dissolving the phenyl benzoate in the minimum amount of hot solvent.
	(1)
(iii)	Explain why the mixture is filtered after cooling.
	(1)
(iv)	Explain why the residue is washed with a small amount of cold solvent.
	(1)
(v)	State how you would check that the sample after recrystallisation was pure.
	(2)
	(Total 16 marks)
	TOTAL FOR SECTION A: 16 MARKS
Ŧ	

	SECTION B Answer any TWO questions from this section in the spaces provided.
	If you answer Question 2 put a cross in this box 🖾.
(a)	Describe the structure of solid sodium chloride.
	(2)
	(2)

Leave blank

(c) Draw a labelled Hess's Law cycle for the dissolving of sodium chloride in water.

Use it and the data below to calculate the enthalpy of solution of sodium chloride.

Lattice enthalpy of NaCl	-771 kJ mol ⁻¹
Hydration enthalpy of Na^+	-406 kJ mol^{-1}
Hydration enthalpy of Cl ⁻	-364 kJ mol ⁻¹

(3)

QUESTION 2 CONTINUES ON THE NEXT PAGE

- - (e) (i) Write the mechanism for the addition of bromine to ethene.

(3)

Leave blank

(ii)	When ethene reacts with a mixture of bromine and sodium chloride, 1,2-dibromoethane and 1-bromo-2-chloroethane are formed but no 1,2-dichloroethane.	Leave blank
	Explain why some 1-bromo-2-chloroethane is formed but no 1,2-dichloroethane.	
·	······	
	(4)	Q2
	(Total 17 marks)	
-		

If you answer Question 3 put a cross in this box 🖾.

3. (a) The table below shows the results of a kinetic investigation into the alkaline hydrolysis of 2-chloro-2-methylpropane, $(CH_3)_3CCl$.

Experiment	[(CH ₃) ₃ CCl] /mol dm ⁻³	[OH ⁻] /mol dm ⁻³	Relative Initial Rate
А	0.2	0.1	1.0
В	0.3	0.1	1.5
С	0.1	0.2	0.5

(i) Deduce the orders of reaction with respect to each of OH⁻ and 2-chloro-2-methylpropane, showing your working.

(3)

(ii) Use the orders that you have deduced in (i) to give the mechanism for the reaction of 2-chloro-2-methylpropane with aqueous hydroxide ions.

(3)

Leave blank

(b) Citronellal is the insect repellent found in a citronella candle.	Leave blank
$\begin{array}{c} H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{2} \\ H_{3} \\ H_{$	
(i) Identify the chiral carbon atom with an asterisk (*) on the diagram above. (1)	
 (ii) Describe simple test tube experiments that would enable you to identify the two functional groups in citronellal. 	

QUESTION 3 CONTINUES ON THE NEXT PAGE

(iii) Draw the formulae of the major organic products formed when citronellal reacts with

sodium tetrahydridoborate(III), NaBH4, in aqueous ethanol

hydrogen bromide

(2)

(iv) Give the equation for the complete combustion of sitronallel C. U. O.	Leave blank
(iv) Give the equation for the complete combustion of citronellal, $C_{10}H_{18}O$.	
Calculate the maximum volume, measured at room temperature and pressure, of carbon dioxide that could be formed by the complete combustion of 1.0 g of citronellal.	
[Molar mass of citronellal = 154 g mol^{-1} and the molar volume of gas at room temperature and pressure = $24 \text{ dm}^3 \text{ mol}^{-1}$]	
(4)	Q3
 (Total 17 marks)	

If you answer Question 4 put a cross in this box 🖾.

4. (a) The melting temperatures of three non-metallic elements in Period 3 are given below.

Element	silicon	white phosphorus	chlorine
Melting temperature/°C	1410	44	99

Explain, in terms of the structures and bonding of the elements, the differences between these values.

······································

Suggest the shapes of these ions and justify the shape of ONE of	the ions
Suggest the shapes of these fors and Justity the shape of ONE of	
	•••••
	•••••
· · · · · · · · · · · · · · · · · · ·	
	(3)
	(2)
	(2)
	(2)
QUESTION 4 CONTINUES ON THE NEXT PAG	(2) E
QUESTION 4 CONTINUES ON THE NEXT PAG	(2) E
QUESTION 4 CONTINUES ON THE NEXT PAG	(2) E
QUESTION 4 CONTINUES ON THE NEXT PAG	(2) E
QUESTION 4 CONTINUES ON THE NEXT PAG	(2) E
QUESTION 4 CONTINUES ON THE NEXT PAG	(2) E
QUESTION 4 CONTINUES ON THE NEXT PAG	(2)

Ì

(d) Phosphorus pentachloride dissociates as shown in the reversible reaction

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

At 420 K and a pressure of 4.0 atm, phosphorus pentachloride was 67% dissociated.

Calculate K_p at this temperature and state its units.

(5)

Leave blank

						THE	PERI	ODIC	TABL	H								
	-	7					U	roup					e	4	Ś	9	5	0
Period																		
1	I H Hydrogen J	P		÷			Molar r S.	Key nass g mol ⁻¹ ymbol	[4 He Helium
7	T Lihium 3	9 Beryllium 4					Atom	Vame ic number	·]			_ 	∼ ^{Boro} a	carbon 6	14 N Nitrogen	16 Oxygen 8	19 Fluorine 9	$\overset{20}{\mathrm{Neon}}\overset{20}{\mathrm{Neon}}$
e	23 Na Sodium	24 Mg Magnesium 12											27 Aluminium 13	28 Silicon	31 Phosphorus 15	32 Sulphur 16	35.5 CI Chlorine 17	40 Ar Argon 18
4	39 K Potassium 19	$\overset{40}{Ca}$	45 Sc Scandium 21	48 Ti Titanium 22	51 V Vanadium 23	52 Cromium 24	55 Mn Manganese 25	se Fe Iron	59 CO Cobalt 27	59 Nickel 28	63.5 Cu Copper 29	65.4 Zn Zinc 30	${{ m Gallium}}^{70}_{{ m Gallium}}$	73 Ge Germanium	$^{75}_{\mathbf{AS}}$ As Arsenic 33	$\mathop{\mathrm{Selenium}}_{34}^{79}$	80 Br 35	84 Krypton 36
ŝ	85 Rubidium 37	88 Strontium 38	89 Y 19 39	91 Zr Zirconium 40	93 Niobium 41	96 MO Molybdenum 42	99 Tc 43	$\underset{^{44}}{^{101}}$	103 Rh Rhodium 45	106 Pd Palladium	$\mathop{\mathrm{Ag}}\limits_{^{47}}$	Cd Cd tadmium	115 Indium 49	${\mathop{\rm Sn}}_{{}^{110}}$	122 Sb Antimony 51	128 Tellurium 52	127 I Iodine 53	131 Xenon 54
. 9	133 CS Caesium 55	137 Barium 56	139 La Lanthanum 57	178 Hf Hafnium 72	181 Tantalum 73	184 W Tungsten 74	186 Renium 75	190 Osmium 76	192 Ir Iridium 77	195 Pt Platinum 78	Au Gold 79	201 Hg Mercury 80	204 Th Thallium 81	207 Pb Lead 82	209 Bismuth 83	210 PO Polonium 84	210 At Astatine 85	222 Radon 86
٢	Francium 87	Radium 88	AC Actinium 89			·		,										
				140 Cerium 58	141 Pr 59	144 Naodymium 60	(147) Promethium 61	150 Samarium 62	152 Europium 63	157 Gd Gadolinium 64	159 Tb Terbium 65	Dysprosium 66	165 HO Holmium 67	$\mathop{\rm Er}\limits_{fa}^{167}_{{\rm Erbium}}$	Tbulium 69 69	$\mathop{Yb}\limits_{70}^{173}$	175 Lu Lutetium 71	
			••••••	232 Th 90	(231) Pa Protactinium 91	238 U Uranium 92	$\underset{\text{P3}}{\overset{(237)}{Np}}$	$\Pr_{p_4}^{(242)}$	(243) Am Americium 95	(247) Cm ²⁶	$\underset{97}{\overset{(245)}{Berkelium}}$	(251) Cf Californium 98	$\mathop{Einsteinium}\limits_{99}^{(254)}$	(253) Fm Fermium 100	(256) Md Mendelevium 101	(254) No 102 102	(257) Lr Lawrencium 103	

`

Í

6246/02

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(a)	$\begin{array}{rcl} CH_3COOH & + & C_2H_5OH & \rightleftarrows & CH_3COOC_2H_5 \\ + & H_2O \ \textbf{(1)} \end{array}$	CH_3CO_2H \rightarrow CH_3CH_2 for C_2H_5	CH ₃ OCOC ₂ H ₅	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(b)	catalyst /speed up reaction (1)		dehydrating agent	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(c)	flask with still head (1)			3
	condenser and a receiver (1)			
	thermometer at correct place (1)			
	penalty of (1) if apparatus sealed or			
	work for some other reason.			

Question	Correct Answer	Acceptable Answers	Reject	Mark
	$\mathbf{x} = \mathbf{x} + $			2
1.(d)	mol ethanoic acid = $\frac{12.6(0)}{40}$ = 0.21 (1)			3
	00 (mol othyl otherperto = 0.21)			
	(mot ethyt ethanoate - 0.21)			
	theoretical mass ethyl ethanoate =			
	$0.21 \times 88 = 18.48 \text{ g or } 18.5 \text{g}$ (1)			
	5 5()			
	% yield = <u>10.60</u> x 100 = 57 (1) 18.48			
	Allow 57.29 or 57.36 or 57.4			
	OR			
	Theoretical mol ethanoic acid = $\frac{12.60}{60}$			
	= 0.21(1)			
	(mol ethyl ethanoate = 0.21)			
	actual malor of			
	actual moles of			
	88			
	= 0.12 (1)			
	% yield = <u>0.12</u> x100 = 57 (1) 0.21			
	Allow 57.1 or 57.14			
	CQ ON FORMULAE IN (a) but these			
	must de possible compounds.			
	IGNORE S.F.			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(e)(i)	$C_2H_5OH + CH_3COCL$	CH_3CH_2 for C_2H_5	CH ₃ OCOC ₂ H ₅	1
	\rightarrow CH ₃ COOC ₂ H ₅ + HCl (1)	₹		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(e)(ii)	Reaction with ethanoic acid reaches equilibrium/is reversible OR Reaction with ethanoyl chloride is not reversible/goes to completion (1)		Reaction with ethanoic acid is incomplete	1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(i)	(Phenyl benzoate) must be soluble in the hot solvent and less/almost insoluble in cold solvent (1)			1

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(f)(ii)	to remove insoluble/un-dissolved			1
	impurities (1)			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
1.(f)(iii)	to remove solid from soluble impurities		Just 'collect the	1
	(1)		product'.	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(iv)	to wash away remaining solution/soluble impurities /remove surface impurity. (1)			1

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
1.(f)(v)	measure melting temperature (1) check value same as data book/sharp melting point (1) OR Use gas-liquid chromatography (1) Showing only one peak (1)		Mix with known sample and measure melting temperature. Any other instrumental method.	2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(a)	ionic lattice (1) Na ⁺ ions have 6 nearest neighbours of Cl ⁻ ions and vice-versa / 6:6 co- ordination (1)	Labelled sketch can score both marks but must have some 3D extension.		2

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(b)	electrostatic attractions (in solid NaCl) overcome (1)	Attractions overcome by solvation of ions scores (1) only		2
	by the attractions between the ions and dipoles in water (1) ; this can be shown in a diagram.			
	OR			
	Water has a high dielectric constant/relative permittivity (1) which reduces the forces of attraction between ions in the solution (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(c)	$NaCl(s)$ (+aq) \rightarrow $Na^{+}(aq)$ + $Cl^{-}(aq)$			3
	Na ⁺ (g) + Cl ⁻ (g) (+aq) Cycle (1)			
	Arrows labelled with names or values (1)			
	Check arrow direction agrees with label/sign of the value			
	ΔH _{soln} = -406-364-(-771) = +1 (kJ mol ⁻¹) (1) + sign not essential		Negative value	

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(d)	sodium hydroxide/NaOH (1) hydrogen /H ₂ (1) anode 2Br ⁻ \rightarrow Br ₂ + 2e ⁽⁻⁾ OR 2Br ⁻ - 2e ⁽⁻⁾ \rightarrow Br ₂ (1) or halved.		H Br	3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(i)	$H \xrightarrow{H} H \xrightarrow{H} $	H H H $H H$ $H H$ H H H H H H H H H		3
	Br Br Br (:)Br arrow (1)	arrow can start at - on Br ⁻ and go to + on C		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
2.(e)(ii)	initial attack (on ethene) is by an electrophile/ $Br^{\delta+}(1)$			4
	no Cl [*] / Cl ^{o*} available as the electrophile (so no dichloroethane formed) (1)			
	then (nucleophilic) attack by Br ⁻ (1)			
	Cl ⁻ can replace Br ⁻ (as nucleophile, so 1-bromo-2-chloroethane is formed) (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(i)	[(CH ₃) ₃ CCl] increases by 1.5 while [OH ⁻] remains constant, rate increases by 1.5 OR In expts A and B, [(CH ₃) ₃ CCl] increases by 1.5 and rate increases by 1.5 (1) so first order (1) [OH ⁻] zero order, with some explanation (1)			3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(a)(ii)	$(CH_3)_3C^{-CI} \longrightarrow (CH_3)_3C^+ + CI^-$		S _N 1 mechanism if [OH ⁻] first order	3
	(1) arrow (1) both ions			
	$(CH_3)_3C^{+}(:)OH^{-} \longrightarrow (CH_3)_3C-OH$ (1) arrow			
	Must be S _N 2 mechanism if 1 st order wrt OH ⁻ in (i) :			
	$\begin{array}{c} \overset{\bullet}{\operatorname{Cl}} \\ H_{3}C \overset{\bullet}{\underset{(\operatorname{CH}_{3})}{}} CH_{3} \\ \overset{\bullet}{\underset{(\operatorname{CH}_{3})}{} CH_{3} \\ \\ \overset{\bullet}{\underset{(\operatorname{CH}_{3})}{} CH_{3} \\ \atop} \\ \\ \overset{\bullet}{\underset{(\operatorname{CH}_{3})}{} CH_{3} \\ \atop} \\ \\ \atop \underset{(\operatorname{CH}_{3})}{} CH_{3} \\ \\ \atop} \\ \\ \overset{\bullet}{\underset{(\operatorname{CH}_{3})}{} CH_{3} \\ \\ \atop} \\ \\ \overset{\bullet}{\underset{(\operatorname{CH}_{3})}{} CH_{3} \\$			
	each arrow (1) x 2 intermediate (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(i)	$ \begin{array}{c} H & CH_{3} & 0 \\ C = C - CH_{2} $			1

Question Number	Correct Answ	wer	Acceptable Answers	Reject	Mark
3.(b)(ii)	alkene (aqueous) bromine (1) colourless(1) OR	orange to			4
	(aqueous) potassium ma (ignore alkaline/acid) (1 colourless/brown (1)	nganate(VII)) purple to		Purple to green.	
	aldehyde any one matching pair fr reagent (1) ol	rom: bservation (1):			
	Fehling's solution b	lue (soln) to red/brown ppt	Benedict's, same observation.	2,4 DNP	
	Tollens' reagent si	ilver mirror or black ppt	Ammoniacal AgNO ₃ , same obs.		

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
3.(b)(iii)	(with NaBH ₄)			2
	$H_{3}C \xrightarrow{H} CH_{3} \xrightarrow{H} H_{3}C \xrightarrow{H} CH_{2}CH_{$			
	$ \begin{array}{c} Br & CH_{3} \\ CH_{3}-C-CH_{2}-CH_{2$			

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
3.(b)(iv)	$C_{10}H_{18}O + 14O_2 \rightarrow 10CO_2 + 9H_2O$ (1)			4
	Ignore any state symbols			
	Moles citronellal = 1.0/154 (1) = 6.49x10 ⁻³			
	Moles CO ₂ = 10x 6.49x10 ⁻³ (1) = 6.49x10 ⁻²			
	Volume CO ₂ = 24 x 6.49 x10 ⁻² = 1.56 dm ³ (1) allow 1.6			
	Allow cq from incorrectly balanced equation. Ignore sf			
	OR			
	154g citronellal gives $240 dm^3 CO_2$ (1)			
	Vol CO ₂ from 1 g = 240/154 (1) = 1.56 dm ³ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(a)	silicon - giant atomic/ giant covalent /giant molecular/macromolecular (1) phosphorus and chlorine - (simple) molecular (1) covalent bonds broken in Si are stronger than intermolecular/dispersion/ Van der Waals'/ London/ induced dipole forces (1) phosphorus is P4 and chlorine is Cl2 (1)			5
	P ₄ has more electrons (per molecule) so stronger dispersion (etc) forces (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(b)	 PCl₄⁺ tetrahedral (1) PCl₆⁻ octahedral (1) 4 or 6 pairs of electrons as far apart as possible to minimise repulsion (1) 	correct 3-D diagrams		3

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(c)	name of any specific alcohol (1) ROH + $PCl_5 \rightarrow RCl + HCl + POCl_3$ (1) [R must apply to the specific alcohol] OR name of any specific carboxylic acid (1) RCOOH + $PCl_5 \rightarrow RCOCl + HCl + POCl_3$ (1) [R must apply to the specific acid]	equation with 'R' if mark lost for not giving a specific example	Just 'alcohol' Just 'acid'	2

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number		If agm malos DCL -		5
4.(U)	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$	0.67 and PCl ₂ =Cl ₂ =0.33		5
	eam moles:	answer = 0.5 and can		
	0.33 0.67 0.67 (1)	score last 3 marks		
	mole fraction:			
	$0.33 \qquad 0.67 \qquad 0.67 \qquad (1)$			
	1.67 1.67 1.67			
	partial pressures:			
	<u>0.33x4</u> <u>0.67x4</u> <u>0.67x4</u> (1)			
	1.67 1.67 1.67			
	- 0 70 -1 605 -1 605	If 1.6 used here then		
	= 0.79 = 1.605 = 1.605	final answer is 3.24		
	$K_{\rm p} = \underline{\rm pPCl}_3 \times \underline{\rm pCl}_2 (1)$			
	pPCl₅			
	-2.26 and $atm(1)$			
	OR			
	$PCl_5 \rightleftharpoons PCl_3 + Cl_2$			
	1/3 2/3 2/3 eam moles			
	(1) 2/3 2/3 equil motes			
	()			
	0.2 0.4 0.4 mole			
	fraction (1)			
	0.8 1.6 1.6 partial			
	press (1)			
	,			
	$K = pP(1 \times p(1 + 1))$			
	$n_p = \frac{p_{PCl_3} \times p_{Cl_2}}{n_{PCl_5}} $ (1)			
	P. 20			
	= 3.2 atm (1)			
			_	

Question	Correct Answer	Acceptable Answers	Reject	Mark
Number				
4.(e)(i)	H_3PO_4 + 2NaOH \rightarrow Na ₂ HPO ₄ + 2H ₂ O			1
	(1)			
	OR			
	$H_3PO_4 + 2OH^- \rightarrow HPO_4^{2-} + 2H_2O$ (1)			

Question Number	Correct Answer	Acceptable Answers	Reject	Mark
4.(e)(ii)	any point between			1