| Centre No. |  |  |  |  |  | Paper Reference |  |  |  |  |  |  | Surname | Initial(s) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Candidate <br> No |  |  |  |  |  | 6 | 2 | 4 | 6 | 1 | 0 | 2 | Signature |  |

## 6246/02 <br> Edexcel GCE <br> Chemistry



Team Leader's use only


## Advanced

Unit Test 6B (Synoptic)
Thursday 24 January 2008 - Morning
Time: 1 hour 30 minutes

$\frac{\text { Materials required for examination }}{\mathrm{Nil}} \quad$| Items included with question papers |
| :--- |
| Nil |

Candidates may use a calculator.

## Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and signature.
Answer Section A in the spaces provided in this question paper.
Answer TWO questions in Section B in the spaces provided in this question paper. Indicate which question you are answering by marking the box ( ( $\delta$ ). If you change your mind about a question, put a line through the box ( ${ }^{-}$) and then mark your new question with a cross (
Show all the steps in any calculations and state the units.

## Information for Candidates

The total mark for this paper is 50 . The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 20 pages in this question paper. All blank pages are indicated.
A Periodic Table is printed on the back cover of this question paper.

## Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers. You will be assessed on your Quality of Written Communication in this paper.

This publication may be reproduced only in accordance with Edexcel Limited copyright policy Q2008 Edexcel Limited

## SECTION A

## Answer ALL parts of this question in the spaces provided.

1. The following procedure can be used to prepare ethyl ethanoate (boiling temperature $77^{\circ} \mathrm{C}$ ).

- Mix $20 \mathrm{~cm}^{3}$ of ethanol (an excess) and 12.6 g of ethanoic acid in a pear-shaped flask.
- Slowly add $8 \mathrm{~cm}^{3}$ of concentrated sulphuric acid, with cooling and mixing.
- Heat the mixture under reflux for 15 minutes.
- Allow the apparatus to cool and then re-arrange it for distillation.
- Collect everything that distils up to $80^{\circ} \mathrm{C}$.
- Purify the distillate.
(a) Write the equation for the reaction between ethanol and ethanoic acid.
$\qquad$
$\qquad$
(b) What is the purpose of the concentrated sulphuric acid in this reaction?
$\qquad$
$\qquad$
(c) Draw a diagram to show how you should set up the apparatus to distil the mixture.
(d) 10.6 g of pure ethyl ethanoate was collected.

Calculate the percentage yield of ethyl ethanoate obtained in this experiment.
(e) Ethyl ethanoate can also be prepared from ethanol and ethanoyl chloride.
(i) Write the equation for this reaction.
$\qquad$
(ii) Explain why the yield obtained by this method is significantly higher than that from ethanoic acid.
$\qquad$
$\qquad$
$\qquad$
(f) The solid ester phenyl benzoate can be prepared from phenol and benzoyl chloride. It is purified by recrystallisation.
(i) Explain what makes a solvent suitable for use in this recrystallisation.
$\qquad$
$\qquad$
(ii) Explain why the mixture is filtered after dissolving the phenyl benzoate in the minimum amount of hot solvent.
$\qquad$
$\qquad$
(iii) Explain why the mixture is filtered after cooling.
$\qquad$
$\qquad$
(iv) Explain why the residue is washed with a small amount of cold solvent.
$\qquad$
$\qquad$
(v) State how you would check that the sample after recrystallisation was pure.
$\qquad$
$\qquad$

## SECTION B <br> Answer any TWO questions from this section in the spaces provided.

If you answer Question 2 put a cross in this box 圈.
2. (a) Describe the structure of solid sodium chloride.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(b) Explain, in terms of the bonding in solid sodium chloride and in the solution, why sodium chloride is soluble in water.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) Draw a labelled Hess's Law cycle for the dissolving of sodium chloride in water.

Use it and the data below to calculate the enthalpy of solution of sodium chloride.

| Lattice enthalpy of NaCl | $-771 \mathrm{~kJ} \mathrm{~mol}^{-1}$ |
| :--- | :---: |
| Hydration enthalpy of $\mathrm{Na}^{+}$ | $-406 \mathrm{~kJ} \mathrm{~mol}^{-1}$ |
| Hydration enthalpy of $\mathrm{Cl}^{-}$ | $-364 \mathrm{~kJ} \mathrm{~mol}^{-1}$ |

(3)
(d) Bromine is produced during the electrolysis of sodium bromide solution.

Identify the other two products of this electrolysis and write the half-equation for the reaction occurring at the anode.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(e) (i) Write the mechanism for the addition of bromine to ethene.
(ii) When ethene reacts with a mixture of bromine and sodium chloride, 1,2-dibromoethane and 1-bromo-2-chloroethane are formed but no 1,2-dichloroethane.

Explain why some 1-bromo-2-chloroethane is formed but no 1,2-dichloroethane.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## If you answer Question 3 put a cross in this box 운

3. (a) The table below shows the results of a kinetic investigation into the alkaline hydrolysis of 2-chloro-2-methylpropane, $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}$.

| Experiment | $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ <br> $/ \mathrm{mol} \mathrm{dm}^{-3}$ | $\left[\mathrm{OH}^{-}\right]$ <br> $/ \mathrm{mol} \mathrm{dm}^{-3}$ | Relative Initial <br> Rate |
| :---: | :---: | :---: | :---: |
| A | 0.2 | 0.1 | 1.0 |
| B | 0.3 | 0.1 | 1.5 |
| C | 0.1 | 0.2 | 0.5 |

(i) Deduce the orders of reaction with respect to each of $\mathrm{OH}^{-}$and

2 -chloro-2-methylpropane, showing your working.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(ii) Use the orders that you have deduced in (i) to give the mechanism for the reaction of 2-chloro-2-methylpropane with aqueous hydroxide ions.
(b) Citronellal is the insect repellent found in a citronella candle.

(i) Identify the chiral carbon atom with an asterisk $\left({ }^{*}\right)$ on the diagram above.
(ii) Describe simple test tube experiments that would enable you to identify the two functional groups in citronellal.
$\qquad$
(iii) Draw the formulae of the major organic products formed when citronellal reacts with
sodium tetrahydridoborate(III), $\mathrm{NaBH}_{4}$, in aqueous ethanol
hydrogen bromide
(iv) Give the equation for the complete combustion of citronellal, $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}$.

Calculate the maximum volume, measured at room temperature and pressure, of carbon dioxide that could be formed by the complete combustion of 1.0 g of citronellal.
[Molar mass of citronellal $=154 \mathrm{~g} \mathrm{~mol}^{-1}$ and the molar volume of gas at room temperature and pressure $=24 \mathrm{dm}^{3} \mathrm{~mol}^{-1}$ ]

## If you answer Question 4 put a cross in this box 圈.

4. (a) The melting temperatures of three non-metallic elements in Period 3 are given below.

| Element | silicon | white phosphorus | chlorine |
| :--- | :---: | :---: | :---: |
| Melting temperature $/{ }^{\circ} \mathrm{C}$ | 1410 | 44 | -99 |

Explain, in terms of the structures and bonding of the elements, the differences between these values.
$\qquad$
(b) In the solid state, phosphorus pentachloride contains the ions $\mathrm{PCl}_{4}^{+}$and $\mathrm{PCl}_{6}{ }^{-}$.

Suggest the shapes of these ions and justify the shape of ONE of the ions.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(c) Name a specific organic compound that has a functional group which reacts with phosphorus pentachloride and write the equation for the reaction.
$\qquad$
$\qquad$
$\qquad$
(d) Phosphorus pentachloride dissociates as shown in the reversible reaction

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

At 420 K and a pressure of 4.0 atm , phosphorus pentachloride was $67 \%$ dissociated.
Calculate $K_{\mathrm{p}}$ at this temperature and state its units.
(e) Phosphorus pentachloride reacts with water to produce phosphoric(V) acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$.

The titration curve when $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of sodium hydroxide is added to $25.0 \mathrm{~cm}^{3}$ of $0.100 \mathrm{~mol} \mathrm{dm}^{-3}$ of phosphoric( V ) acid is shown below.

(i) Write the equation for the reaction that has occurred when $50.0 \mathrm{~cm}^{3}$ of sodium hydroxide solution has been added.
$\qquad$
$\qquad$
(ii) Mark a point on the curve with a cross (x) where a buffer solution would be present.
(1)
(Total 17 marks)
TOTAL FOR SECTION B: 34 MARKS
TOTAL FOR PAPER: 50 MARKS

## END

THE PERIODIC TABLE

$$
\begin{aligned}
& 0 \\
& r
\end{aligned}
$$

| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(a) | $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ <br> $+\mathrm{H}_{2} \mathrm{O}(1)$ | $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$ <br> $\mathrm{CH}_{3} \mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$ | $\mathrm{CH}_{3} \mathrm{OCOC}_{2} \mathrm{H}_{5}$ | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(b) | catalyst /speed up reaction (1) |  | dehydrating agent | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(c) | flask with still head (1) |  |  |  |
| condenser and a receiver (1) |  |  |  |  |
| thermometer at correct place (1) |  |  |  |  |
| penalty of (1) if apparatus sealed or <br> open at the wrong place or doesn't <br> work for some other reason. |  | 3 |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 1.(d) | $\begin{align*} & \text { mol ethanoic acid }=\frac{12.6(0)}{60}=0.21(1) \\ & (\text { mol ethyl ethanoate }=0.21) \\ & \text { theoretical mass ethyl ethanoate }= \\ & 0.21 \times 88=18.48 \mathrm{~g} \text { or } 18.5 \mathrm{~g}(1) \\ & \% \text { yield }=\frac{10.60}{18.48} \times 100=57(1) \tag{1} \end{align*}$ <br> Allow 57.29 or 57.36 or 57.4 <br> OR <br> Theoretical mol ethanoic acid $=\frac{12.60}{60}$ $=0.21(1)$ <br> $($ mol ethyl ethanoate $=0.21)$ <br> actual moles of ethyl ethanoate $=\frac{10.6}{88}$ $=0.12(1)$ <br> $\%$ yield $=\frac{0.12}{0.21} \times 100=57$ <br> Allow 57.1 or 57.14 <br> CQ ON FORMULAE IN (a) but these must be possible compounds. <br> IGNORE S.F. |  |  | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :---: | :--- | :--- | :--- |
| 1.(e)(i) | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{CH}_{3} \mathrm{COCl}$ <br> $\rightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{HCl}(1)$ | $\mathrm{CH}_{3} \mathrm{CH}_{2}$ for $\mathrm{C}_{2} \mathrm{H}_{5}$ <br> $\rightleftarrows$ | $\mathrm{CH}_{3} \mathrm{OCOC}_{2} \mathrm{H}_{5}$ | 1 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(e)(ii) | Reaction with ethanoic acid reaches <br> equilibrium/is reversible <br> OR <br> Reaction with ethanoyl chloride is not <br> reversible/goes to completion (1) | Reaction with <br> ethanoic acid is <br> incomplete | 1 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(f)(i) | (Phenyl benzoate) must be soluble in <br> the hot solvent and less/almost <br> insoluble in cold solvent (1) |  | 1 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(f)(ii) | to remove insoluble/un-dissolved <br> impurities (1) |  | 1 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(f)(iii) | to remove solid from soluble impurities <br> (1) | Just 'collect the <br> product'. | 1 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 . ( f ) ( i v ) ~}$ | to wash away remaining <br> solution/soluble impurities /remove <br> surface impurity. (1) |  | 1 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 1.(f)(v) | measure melting temperature (1) <br> check value same as data book/sharp <br> melting point (1) |  | Mix with known <br> sample and measure <br> melting <br> temperature. | 2 |
| OR | Une gas-liquid chromatography (1) <br> Showing only one peak (1) | Anstrumental <br> method. |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2.(a) | ionic lattice (1) <br> $\mathrm{Na}^{+}$ions have 6 nearest neighbours of <br> $\mathrm{Cl}^{-}$ions and vice-versa / 6:6 co- <br> ordination (1) | Labelled sketch can <br> score both marks but <br> must have some 3D <br> extension. | 2 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2.(b) | electrostatic attractions (in solid NaCl$)$ <br> overcome (1) <br> by the attractions between the ions <br> and dipoles in water (1) ; this can be <br> shown in a diagram. <br> OR | Attractions overcome <br> by solvation of ions <br> scores (1) only | 2 |  |
| Water has a high dielectric <br> constant/relative permittivity (1) <br> which reduces the forces of attraction <br> between ions in the solution (1) |  |  |  |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 2.(c) | Arrows labelled with names or values (1) <br> Check arrow direction agrees with label/sign of the value $\begin{aligned} \Delta \mathrm{H}_{\text {soln }} & =-406-364-(-771) \\ & =+1\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)(1) \end{aligned}$ <br> + sign not essential |  | Negative value | 3 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 2.(d) | sodium hydroxide/ NaOH (1) <br> hydrogen $/ \mathrm{H}_{2}(1)$ <br> anode 2 $\mathrm{Br}^{-} \rightarrow \mathrm{Br}_{2}+2 e^{(-)}$ <br> OR <br> $2 \mathrm{Br}^{-}-2 \mathrm{e}^{(-)} \rightarrow \mathrm{Br}_{2}$ (1) or halved. | H <br> Br | 3 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2.(e)(i) |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :--- | :--- | :--- | :--- |
| 2.(e)(ii) | initial attack (on ethene) is by an <br> electrophile/ $\mathrm{Br}^{\delta+}(1)$ <br> no Cl $/ \mathrm{Cl}^{\delta+}$ available as the <br> electrophile (so no dichloroethane <br> formed) (1) <br> then (nucleophilic) attack by Br (1) <br> Cl <br> 1-ban replace $\mathrm{Br}^{-}$(as nucleophile, so <br> 1-bromo-2-chloroethane is formed) (1) |  | 4 |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3.(a)(i) | $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ increases by 1.5 while [ $\mathrm{OH}^{-}$ ] remains constant, rate increases by 1.5 <br> OR <br> In expts A and $\mathrm{B},\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCl}\right]$ increases by 1.5 and rate increases by 1.5 (1) <br> so first order (1) <br> [ $\mathrm{OH}^{-}$] zero order, with some explanation (1) |  |  | 3 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3.(a)(ii) | $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\stackrel{-}{\mathrm{Cl}} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}+\mathrm{Cl}^{-}$ <br> (1) arrow <br> (1) both ions $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+} \leftrightharpoons(:) \mathrm{OH}^{-} \longrightarrow\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\mathrm{OH}$ <br> (1) arrow <br> Must be $S_{\mathrm{N}} 2$ mechanism if $1^{\text {st }}$ order wrt $\mathrm{OH}^{-}$in (i): |  | $\mathrm{S}_{\mathrm{N}} 1$ mechanism if [ $\mathrm{OH}^{-}$] first order | 3 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3.(b)(i) |  |  |  | 1 |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3.(b)(ii) | alkene <br> (aqueous) bromine (1) orange to colourless(1) <br> OR <br> (aqueous) potassium manganate(VII) (ignore alkaline/acid) (1) purple to colourless/brown (1) <br> aldehyde <br> any one matching pair from: <br> reagent (1) observation (1): <br> Fehling's solution blue (soln) to red/brown ppt <br> Tollens' reagent silver mirror or | Benedict's, same observation. Ammoniacal $\mathrm{AgNO}_{3}$, same obs. | Purple to green. 2,4 DNP | 4 |



| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 3.(b)(iv) | $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}+14 \mathrm{O}_{2} \rightarrow 10 \mathrm{CO}_{2}+9 \mathrm{H}_{2} \mathrm{O}(1)$ Ignore any state symbols $\begin{aligned} \text { Moles citronellal } & =1.0 / 154(1) \\ & =6.49 \times 10^{-3} \end{aligned}$ <br> Moles $\mathrm{CO}_{2}=10 \times 6.49 \times 10^{-3}(1)$ $=6.49 \times 10^{-2}$ <br> Volume $\mathrm{CO}_{2}=24 \times 6.49 \times 10^{-2}$ $=1.56 \mathrm{dm}^{3}(1) \text { allow } 1.6$ <br> Allow cq from incorrectly balanced equation. <br> Ignore sf <br> OR <br> 154 g citronellal gives $240 \mathrm{dm}^{3} \mathrm{CO}_{2}$ (1) <br> Vol $\mathrm{CO}_{2}$ from $1 \mathrm{~g}=240 / 154$ (1) $=1.56 \mathrm{dm}^{3}(1)$ |  |  | 4 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4.(a) | silicon - giant atomic/ giant covalent <br> /giant molecular/macromolecular (1) <br> phosphorus and chlorine - (simple) <br> molecular (1) <br> covalent bonds broken in Si are <br> stronger than <br> intermolecular/dispersion/ <br> Van der Waals'/ London/ induced <br> dipole forces (1) <br> phosphorus is P4 and chlorine is Cl2 (1) <br> P $_{4}$ has more electrons (per molecule) <br> so stronger dispersion (etc) forces (1) |  | 5 |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4.(b) | $\mathrm{PCl}_{4}^{+}$tetrahedral (1) <br> $\mathrm{PCl}_{6}^{-}$octahedral (1) <br> 4 or 6 pairs of electrons as far apart as <br> possible to minimise repulsion (1) | correct 3-D diagrams | 3 |  |


| Question Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4.(c) | name of any specific alcohol (1) <br> $\mathrm{ROH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCl}+\mathrm{HCl}+\mathrm{POCl}_{3}$ <br> (1) <br> [R must apply to the specific alcohol] <br> OR <br> name of any specific carboxylic acid (1) <br> $\mathrm{RCOOH}+\mathrm{PCl}_{5} \rightarrow \mathrm{RCOCl}+\mathrm{HCl}+$ <br> $\mathrm{POCl}_{3}(1)$ <br> [ R must apply to the specific acid] | equation with ' $R$ ' if mark lost for not giving a specific example | Just ‘alcohol’ <br> Just 'acid’ | 2 |


| Question | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4.(d) |  | If eqm moles $\mathrm{PCl}_{5}=$ 0.67 and $\mathrm{PCl}_{3}=\mathrm{Cl}_{2}=0.33$ answer $=0.5$ and can score last 3 marks <br> If 1.6 used here then final answer is 3.24 |  | 5 |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :--- | :--- | :--- | :--- | :--- |
| 4.(e)(i) | $\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{HPO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$ <br> $(1)$ |  |  | 1 |
| OR |  |  |  |  |
| $\mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{OH}^{-} \rightarrow \mathrm{HPO}_{4}{ }^{2-}+2 \mathrm{H}_{2} \mathrm{O}$ (1) |  |  |  |  |


| Question <br> Number | Correct Answer | Acceptable Answers | Reject | Mark |
| :---: | :---: | :---: | :---: | :---: |
| 4.(e)(ii) |  |  | 1 |  |
|  |  |  |  |  |

