Integration C4 Questions

Antonio Marques
Total Marks: 175 (for compulsory questions)

1. (a) Show clearly that

$$
\int 2^{x} d x=\frac{2^{x}}{\ln (2)}+C
$$

where C is an arbitrary constant
Hence or otherwise, find
(b)

$$
\int x 2^{x} d x
$$

Now suppose the following integral:

$$
I_{n}=\int_{0}^{1} x^{n} 2^{x} d x
$$

(c) OPTIONAL By using integration by parts or otherwise, Show that

$$
\ln (2) I_{n}=2-n I_{n-1}
$$

where $n \geq 2$.
(d) Hence or otherwise, explain carefully why $I_{n+1}<I_{n}$, state the value of n for the maximum value of I_{n} for $n \geq 2$. Find this maximum value of I_{n}.
2. The figure below shows a sketch of the area between $y=\sqrt{x-x^{2}}$ and the x-axis, where $0 \leq x \leq 1$.

Figure 1

(a) Find the cartesian equation of this function and show the area under the function in the above figure and between the x -axis is $\frac{\pi}{8}$

Let

$$
\begin{equation*}
I=\int_{0}^{1}(\sqrt{x} \sqrt{1-x}) d x \tag{3}
\end{equation*}
$$

(b) By using the trapezium rule with height of $\frac{1}{4}$, approximate the value of I to 2 decimal places.
(c) By using the substitution $x=\sin ^{2} \theta$ or otherwise, Show that

$$
\begin{equation*}
I=\frac{\pi}{8} \tag{6}
\end{equation*}
$$

3. (a) By use of an appropriate substitution, show that

$$
\begin{aligned}
& \int \cot (x) d x=\ln (\sin (x))+C_{1} \\
& \int \tan (x) d x=\ln (\sec (x))+C_{2}
\end{aligned}
$$

Where C_{1} and C_{2} are arbitrary constants.
(b) Hence solve the two integrals

$$
\begin{gather*}
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\left(\sqrt{\operatorname{cosec}^{2}(2 x)-1}\right) d x \\
\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\left(\sqrt{\sec ^{2}(4 x)-1}\right) d x \tag{5}
\end{gather*}
$$

(c) OPTIONAL Show that for $n>0$

$$
J_{1}=\int_{0}^{\frac{\pi}{4}} \tan ^{n}(x) \sec ^{2}(x) d x=\frac{1}{n+1}
$$

and show that $J_{1}=J_{2}$ where

$$
J_{2}=\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \cot ^{n}(x) \operatorname{cosec}^{2}(x) d x
$$

[NOTE: You may assume that as $x \rightarrow \frac{\pi}{2}$ then $\cot (x) \rightarrow 0$ i.e at $x=\frac{\pi}{2}, \cot (x)=0$]
4. Given that $f(x)=\sqrt{4-7 x}$
(a) Express $f(x)$ by using the binomial expansion obtain the first four non-zero terms, simplifying your coefficients.
(b) By using your binomial expansion of $f(x)$ find an approximate value of A to 3 decimal places, where

$$
\begin{equation*}
A=\int_{0}^{\frac{1}{4}} f(x) d x \tag{3}
\end{equation*}
$$

(c) Find the exact value of A, and show that the percentage error of our previous approximation is 0.129%.
5. (a) Prove the identity

$$
\begin{equation*}
\cos (3 x)=4 \cos ^{3} x-3 \cos x \tag{3}
\end{equation*}
$$

Hence deduce an identity for $\cos 9 x$
(b) Show, using the substitution $x=\sin \theta$ or $x=\cos \theta$ that

$$
\int_{0}^{\frac{1}{2}} \sqrt{1-x^{2}} d x=\frac{\pi}{12}+\frac{\sqrt{3}}{8}
$$

The figure below shows a sketch of the parametric equation valid for $0 \leq t \leq \frac{2 \pi}{3}$

Figure 2
(c) Given that at $\mathrm{P}, t=0$ and that at $\mathrm{Q}, t=\frac{\pi}{18}$, Show that P has coordinates $(0,1)$ and Q has coordinates $\left(\frac{1}{2}, 0\right)$.

The shaded region in Figure 2 is bounded by the given curve and the x-axis. We wish to find half of this shaded region (for now) between $x=0, x=\frac{1}{2}$, the curve given and the x-axis
(d) Show that this initial area that we are trying to find is given by the integral

$$
3 \int_{0}^{\frac{\pi}{18}}(\cos 9 t \cos 3 t) d t
$$

and hence find the area.
(e) By using the identity for $\cos 9 x$ which your proved in part (a), show that the cartesian equation of this parametric equation is

$$
\begin{equation*}
y= \pm \sqrt{1-x^{2}}\left(1-4 x^{2}\right) \tag{5}
\end{equation*}
$$

Given that (which you can prove using the same substitution as part (b))

$$
\int_{0}^{\frac{1}{2}} x^{2} \sqrt{1-x^{2}} d x=\frac{\pi}{48}-\frac{\sqrt{3}}{64}
$$

(f) Show that you obtain the same answer to part (d) by integrating

$$
\begin{equation*}
\int_{0}^{\frac{1}{2}} \sqrt{1-x^{2}}\left(1-4 x^{2}\right) d x \tag{4}
\end{equation*}
$$

(g) Deduce the area of the shaded region in Figure 2.
6. (a) Solve

$$
\int_{1}^{e} \ln (x) d x
$$

(b) Suppose the integral

$$
\begin{equation*}
I_{n}=\int_{1}^{e} x^{n} \ln (x) d x \tag{3}
\end{equation*}
$$

Show using calculus that

$$
I_{n}=\frac{n e^{n+1}+1}{(n+1)^{2}}
$$

Verify that your answer to part (a) works for the value $n=0$. Explain carefully why this result is not valid for $n=-1$, and hence find I_{-1} separately.
(c) Explain whether I_{n+1} is greater than, less than or equal to I_{n} using the given formula.
(d) By using a substitution of $u=\sin x$ solve

$$
\begin{equation*}
\int \ln (\sin (x)) \cot (x) d x \tag{5}
\end{equation*}
$$

(e) OPTIONAL By using a substitution $u=\pi-x$ Show that,

$$
\begin{equation*}
\int_{0}^{\pi} \frac{\ln (\sin (x))}{\cos (x)} d x=0 \tag{5}
\end{equation*}
$$

7. (a) Show using partial fractions that

$$
\begin{equation*}
\frac{4 x}{x^{4}-1} \equiv \frac{1}{x-1}+\frac{1}{x+1}-\frac{2 x}{x^{2}+1} \tag{4}
\end{equation*}
$$

(b) Show by separation of variables that the differential equation

$$
\frac{d y}{d x}=\frac{\sin ^{4} y-1}{2 x \sin 2 y}
$$

becomes

$$
\begin{equation*}
\int \frac{4 \sin y \cos y}{\sin ^{4} y-1} d y=\int \frac{1}{x} d x \tag{1}
\end{equation*}
$$

(c) By using a substitution $u=\sin y$ and given that at $x=4 y=0$, solve the differential equation and show that

$$
x=\frac{4\left|\sin ^{2} y-1\right|}{\sin ^{2} y+1} \equiv \frac{4\left(1-\sin ^{2} y\right)}{\sin ^{2} y+1}
$$

Explain the need for the modulus or change of sign of the function of x.
(d) Hence find the value of x when $y=\frac{\pi}{6}$
8. (a) Given that

$$
y=\frac{a x+b}{c x+d}
$$

Find $\frac{d y}{d x}$ in its simplest form.

Figure 3
(b) The diagram above shows a sketch of

$$
f(x)=\frac{4}{x+2} \sqrt{\ln \left(\frac{2(5 x+2)}{x+2}\right)}
$$

with the two labelled points, P and Q , and the area R which is bounded by the given function and a linear function l, that passes through both points P and Q . Find the exact coordinates of P and Q where the x-coordinate at Q is 1 , and P is the x-intercept of $f(x)$. Explain carefully why $f(x) \geq 0$ for values of x greater than or equal to the x-coordinate of P , and explain why all other values of x do not give real values of $f(x)$.
(c) The function $f(x)$ is rotated 2π radians about the x-axis. Find the volume generated by
$f(x)$ between the x-coordinates of P and Q , giving your answer in exact form. [HINT: part (a) will be useful to notice the substitution for this integral.]
(d) The linear function l is also rotated 2π radians about the x-axis. Given that the shape it makes is a cone, and the volume of a cone is given by $V=\frac{\pi r^{2} h}{3}$ where r is the radius of
the cone and h is the height of the cone. Find the exact volume of the cone that l makes makes is a cone, and the volume of a cone is given by $V=\frac{\pi r^{2} h}{3}$ where r is the radius of
the cone and h is the height of the cone. Find the exact volume of the cone that l makes when rotated 2π radians.
(e) Deduce the volume that R generates when it is rotated 2π radians about the x-axis, giving
your answer to 2 decimal places.

END

