STEP II Q11

(i) Let A, B denote the particles with positions $\mathbf{r}^{A}=(a+u t \cos \alpha, u t \sin \alpha)$ and $\mathbf{r}^{B}=(v t \cos \beta, b+v t \sin \beta)$ respectively. Rearranging to eliminate t and writing the trig functions in harmonic form, the particles collide iff

$$
\begin{aligned}
\mathbf{r}^{A}(t)=\mathbf{r}^{B}(t) & \Longleftrightarrow \frac{a}{v \cos \beta-u \cos \alpha}=\frac{b}{u \sin \alpha-v \sin \beta} \\
& \Longleftrightarrow u(a \sin \alpha+b \cos \alpha)=v(a \sin \beta+b \cos \beta) \\
& \Longleftrightarrow u \sqrt{a^{2}+b^{2}} \sin (\theta+\alpha)=v \sqrt{a^{2}+b^{2}} \sin (\theta+\beta) \\
& \Longleftrightarrow u \sin (\theta+\alpha)=v \sin (\theta+\beta)
\end{aligned}
$$

where θ satisfies $\tan \theta=\frac{b}{a}$, as desired.
(ii) Observe that the positions of the projectile and the gun bullet w.r.t. the foot of the gun tower are given by $\mathbf{r}^{P}=\left(a+u t \cos \alpha, u t \sin \alpha-g t^{2} / 2\right)$ and $\mathbf{r}^{G}=\left(v t \cos \beta, b+v t \sin \beta-g t^{2} / 2\right)$ respectively. Let T denote the time of collision after projection. Considering the height at which the collision occurs:

$$
\mathbf{r}_{y}^{P}=\mathbf{r}_{y}^{G} \Longleftrightarrow T=\frac{b}{u \sin \alpha-v \sin \beta}
$$

Furthermore, observe that P hits the ground again at time $T_{0}>0$, where T_{0} satisfies:

$$
\mathbf{r}_{y}^{P}\left(T_{0}\right)=0 \Longleftrightarrow T_{0}=\frac{2 u \sin \alpha}{g}
$$

Given that the impact occurs before P reaches the ground, it follows that:

$$
T_{0}>T \Longleftrightarrow 2 u \sin \alpha(u \sin \alpha-v \sin \beta)>b g
$$

as required.
Now, we see that the bullet hits the projectile if and only if A and B collide. Indeed:

$$
\mathbf{r}^{P}=\mathbf{r}^{G} \Longleftrightarrow \mathbf{r}^{P}+\left(0, g t^{2} / 2\right)=\mathbf{r}^{G}+\left(0, g t^{2} / 2\right) \Longleftrightarrow \mathbf{r}^{A}=\mathbf{r}^{B}
$$

Given that the cartesian trajectories of A and B are given by the straight lines $y=\tan \alpha x-a \tan \alpha$ and $y=x \tan \beta+b$ respectively, in order for there to be an intersection and therefore a collision, it is necessary that the gradient of the former line is more steep than the latter (as seen from a quick sketch). That is, G hits P only if

$$
\tan \alpha>\tan \beta \Longrightarrow \alpha>\beta
$$

As the angles are acute.

