Proof of divisibility by 3

Pixelwitch

June 21, 2016

Let it be true for $n=k$ that $2^{2 n}-1$ is divisible by 3 This implies that as

$$
2^{2 k}-1=\left(2^{k}-1\right)\left(2^{k}+1\right)
$$

Either $\left(2^{k}-1\right)$ is divisible by 3 , or $\left(2^{k}+1\right)$ is divisible by 3 . And hence

$$
2^{k}=3 m+1 \quad \text { or } \quad 2^{k}=3 m-1
$$

Where $m \in \mathbb{N}$.
As this is true for $n=k$, if it were the case that for $n=k, 2^{k}=3 m+1$

$$
\begin{aligned}
2^{2(k+1)}-1 & =\left(2^{k+1}-1\right)\left(2^{k+1}+1\right) \\
& =\left(2^{k} \times 2-1\right)\left(2^{k} \times 2+1\right) \\
& =(2(3 m+1)-1)(2(3 m+1)+1) \\
& =(6 m+1)(6 m+3) \\
& =3(6 m+1)(2 m+1) \\
\frac{3(6 m+1)(2 m+1)}{3} & =(6 m+1)(2 m+1) \in \mathbb{N} .
\end{aligned}
$$

In the alternative case, that for $n=k, 2^{k}=3 m-1$

$$
\begin{aligned}
2^{2(k+1)}-1 & =\left(2^{k+1}-1\right)\left(2^{k+1}+1\right) \\
& =\left(2^{k} \times 2-1\right)\left(2^{k} \times 2+1\right) \\
& =(2(3 m-1)-1)(2(3 m-1)+1) \\
& =(6 m-3)(6 m-1) \\
& =3(2 m-1)(6 m-1)
\end{aligned}
$$

$$
\frac{3(2 m-1)(6 m-1)}{3}=(2 m-1)(6 m-1) \in \mathbb{N} .
$$

Hence it is true for either case arising in $n=k$, and hence for $n=k+1$. For $n=1$

$$
\begin{aligned}
2^{2(1)}-1 & =4-1 \\
& =3 \\
\frac{3}{3}=1 \in \mathbb{N} &
\end{aligned}
$$

Which makes it true for $n=1$. As it is true for $n=1$ and $n=k+1$, by the principle of mathematical induction it is true for all $n \geq 1$

