<u>Some question types and answers for paper F335.</u> – some responses based on mark schemes. Questions based on some of these have occurred several times and could do so again.

Describe structure of benzene

-each carbon uses 3 electrons to form single bonds

-one electron from each carbon is delocalised

-forms two rings of electron density above and below plane of carbon atoms

-6 electrons delocalised -make ring more energetically stable/ open to electrophilic substitution.

-All C-C bond lengths equal.

-undergo substitution as addition would disrupt the delocalisation and require more energy. (e.g doesn't decolourise bromine water as an alkene would).

Why does a dye or pigment appear to be colour "X"?

-absorbs <u>visible</u> light
-of correct frequency to excite <u>electrons</u> to higher energy level
-frequency absorbed linked to size of energy <u>gap</u> between levels (ΔE=hv)
-complementary colours not absorbed and transmitted (reflected if solid) = colour seen /colour "X" (<u>NO</u> emission of visible photons involved).
<u>NOT emission – only very hot objects usually emit light!</u>

Why is benzene colourless but dye "X" is coloured? (or similar).

- Dye X contains more extensive region of delocalised electrons
- More extensive delocalisation in dye X **reduces** energy needed to excite electrons as it decreases the <u>size of the gap between energy levels</u>. (Δ**E=hv**)
- So dye X can be excited by absorbing visible light frequencies we see complementary colour (colours <u>not</u> absorbed) to those absorbed.
- Benzene needs **UV** radiation to be able to excite electrons so no visible frequencies absorbed/all visible frequencies transmitted.
- UV radiation has <u>higher</u> energy/frequency than visible radiation.
- (Alternating double bonds allow electrons to be delocalised, as do aromatic rings).
- Emission is **NOT** involved in the colour of dyes at room temp- do NOT use the "E" word in your answers or you will CON earlier marks. Absorbing ONLY.

-

Colour in transition metal ions in solution.

- 3<u>d</u> or <u>d</u>-subshell (d-orbitals) split into two levels.
- Electrons are excited/ move up to higher energy level
- By absorbing light of frequency corresponding to the gap (delta E) ΔE = hv
- See complementary colour to light absorbed.
- Changing the ligand changes the size of the gap ΔE and hence changes the frequency of light absorbed causing a colour change.

How can **emission** spectrum be used to tell difference between 2

pigments/elements?

-electrons have been e	xcited to higher energy		
levels.		↓	
-they will drop	¥		
down to <u>lower</u>			
<u>energy levels</u> by			
emitting a photon			

(In most cases <u>not</u> falling to "ground state")

- frequency of photon linked to size of gap **between** energy levels (Δ**E=hv**)

-each element will have different energy levels so frequencies emitted will be unique to each element seen as "bright <u>lines</u>" on dark background.

-if diagram needed, remember higher energy levels **<u>closer</u>** together than lower ones.

What are conditions used in the Haber Process?

Pressure = **25-150atm** temp = **400-500°C**, Iron catalyst. (beware alternatives in some revision guides!)

Dead easy way to lose marks?

Not putting "+" or "-" sign in front of entropy(ΔS) or enthalpy (ΔH) changes. Not writing sign for oxidation states in **front** of number (+5 yes, 5+ no, 5 no). Forgetting to convert enthalpy changes (delta H) to <u>JOULES</u> in <u>entropy</u> calculations. ($\Delta S_{surr} = -\Delta H/T$)

Writing electron configurations as subscripts and not superscripts $(1s^2 2s^2 2p^6 YES 1s_2 2s_2 2p_6 NO!!)$

Not putting the **O**—**H** bond in a "**full** structural formula" of an alcohol, carboxylic acid etc.

What is a buffer?

<u>Resists changes in pH</u> if <u>small</u> amounts of <u>alkali/acid</u> are added. Weak acid and salt **both** present in **high** concentrations. (may need to add that excess acid/alkali can be barmful to tissues or en

(may need to add that excess acid/alkali can be harmful to tissues or enzyme function).

How does a buffer work/ maintain pH etc?

Contain weak acid (HA) and salt (A⁻) in equilibrium $HA \rightleftharpoons H^+ + A^-$ If acid added, extra H⁺ ions send equilibrium position to left to restore H⁺ levels to original value.

If alkali added, OH^{-} remove H^{+} , equilibrium moves to right to replace H^{+}

Ka expressions – always write full K_a expression – even for stated weak acids. (only use Ka = $[H^+]^2/[HA]$ in calculations)

Conjugate acid/ base pairs

 $H_2SO_4 / HSO_4^- HNO_3/NO_3^- HCl/Cl^- H_2NO_3^+/HNO_3 CH_3COOH/CH_3COO^- H_3O^+/H_2O H_2O/HO^- HClO_3/ClO_3^-$ in each case losing H⁺ creates conjugate base. Make sure you can name the negative ion in each example. Hydrogensulfate (VI), nitrate(V), chloride, ethanoate, hydroxide, chlorate (V).

What is a weak acid?

-only partially dissociated in solution/ dissociation equilibrium lies to the left.

Write an equation that shows HCl is a strong acid. HCl $_{(aq} \rightarrow H^{+}_{(aq)} + Cl^{-}_{(aq)}$ Forwards arrow only, NO equilibrium sign.

Suggest why a solution of pH 8 is not suitable for use in eye drops. alkali(ne)/ OH- ions damage/harmful to/irritate/sting... the eye

Systematically name : FeCl₂ KClO₃ KNO₂ NO₂ Cu(NO₃)₂ Fe₂(SO₄)₃ HNO₂ Iron (II) chloride, potassium chlorate (V), potassium nitrate (III), nitrogen (IV) oxide (or nitrogen dioxide), copper (II) nitrate (V), iron (III) sulfate (VI), nitric (III) acid (nitrous acid).

Colour changes :

Potassium dichromate (if oxidises alcohol or aldehyde) <u>Orange</u> to <u>green</u>. Bromine water (reacting with C=C in alkene) <u>yellow/orange/brown</u> to <u>colourless</u>. (Not **red** at start)

Iron (III) chloride (in presence of phenol group) - yellow/brown to purple.

Bond angles and shape questions

There are 2/3/4/6 <u>regions of electron density around</u> the <u>central atom</u>. Regions/areas of <u>electron density</u>, <u>repel</u> as <u>far apart as possible</u> to <u>minimise</u> <u>repulsion</u>,

giving bond angles of $180/120/109/90^{\circ}$.

(each lone pair counts as a region of electron density, a double or triple bond counts as **one** region).

Names: linear/bent or v-shaped/triangular planar/ tetrahedral/octahedral.

Dot and cross structures cannot account for the bonding in some molecules such as B_2H_6 so why do Chemists continue to use dot and cross structures? -It works effectively/well for the majority of molecules/substances.

Ionic structures – properties

High melting point –strong electrostatic attractions between ions need much energy to overcome.

Soluble in water – ions can be hydrated/ form strong ion-dipole bonds to water molecules.

Conduct when molten (or aqueous solution if soluble)- **ions** free to move in liquid/solution and carry charge and create a current. (**NO** <u>delocalised</u> <u>electrons</u> in <u>ionic substances!</u>)

Explain why salts containing large cations and large anions are likely to have low melting points.

Weak <u>ionic bonds</u> OR weak electrostatic forces between <u>ions</u> (NOT intermolecular bonds or ion-dipole)

Small amount of <u>energy</u> needed to separate ions.

Explain why calcium oxide has a high melting point.

-reference to ions or ionic structure -strong electrostatic forces **OR** strong attraction forces between ions **OR** strong ionic bonds **OR** a lot of energy needed to break ionic bonds

How does adding $-SO_3H$, or $-SO_3Na^+$ change properties of organic substance? Makes more soluble in water. - ionic $-SO_3$ groups are strongly hydrated (form strong **ion-dipole** bonds) in water. Ion –dipole bonds formed stronger / similar to H-bonding between water molecules.

IR questions

Use term **absorbance**, name specific **bond**, state wave numbers e.g absorbance at 1720-1740 cm⁻¹ for C=O aldehyde.

NMR questions

Give chemical shift and give the **full** description of the proton type from the table, don't forget relative intensities – e.g methanol contains peaks at δ 1.0 R-CH₃ and δ 4.0 R-OH, intensities in ratio 3:1. (Hs, protons, hydrogens OK to use but not H⁺) **Splitting in nmr.**

<u>Doublet</u> (split into 2) implies <u>1 H</u> on <u>adjacent</u> (neighbouring) <u>carbon</u>. <u>Triplet</u> (split into 3) implies <u>2 Hs</u> on <u>adjacent</u> (neighbouring) <u>carbon</u>. <u>Quartet</u> (split into 4) implies <u>3 Hs</u> on <u>adjacent</u> (neighbouring) <u>carbon</u>.

Mass spectrum questions.

Don't forget **all** ions seen in the mass spectrum have +1 charge! [COOH]⁺ this charge must be written.

Remember the ion at the higher end of the spectrum giving the Mr is called the "molecular ion".

Carbon dioxide vs. silicon dioxide – structure and bonding/properties.

 $-CO_2$ gas at room temp, SiO₂ = solid with very high melting point -CO₂ = simple molecules, only weak instantaneous dipole-induced dipole bonds between CO₂ molecules- need little <u>energy</u> to overcome.

 $SiO_2 = covalent network$, vast amounts of <u>energy</u> needed to break network of strong <u>covalent</u> bonds. (<u>NOT</u> "intermolecular bonds" in SiO₂ = common mistake!) SiO₂ insoluble in water, water can't break down network of covalent bonds. CO₂ slightly soluble in water as lone pair on O atoms in CO₂ can form (limited) H-Bonds to H on water molecules.

Why is it good to bury CO₂ in deep oceans/ why is it not being done?

-CO₂ responsible for greenhouse effect – melts polar icecap or sea level rise, climate change harming agriculture/ecosystems.

-adding CO₂ to sea water reduces water pH/increases acidity- harms marine life, technology not yet developed or technology very expensive.

Give 2 ways of **removing** carbon dioxide from the atmosphere.

increasing photosynthesis / planting more trees (capture and storage)by pumping to the ocean floor or sea bed / pump <u>deep</u> under the sea. (not just pump into sea/ocean) capture and storage in (former) oil / gas wells / porous rock

(de due and storage in (former) <u>off / gas weils</u> / <u>porous</u> rock

(don't confuse with the question on how to reduce CO_2 emissions)

Why is the shape of molecule X important in a biological context (enzyme, bacteria, medicine)?

-to be effective X must fit the receptor/active site of the bacteria/enzyme = molecular recognition.

-enzyme active site (receptor sites) have specific shapes so only molecules that fit this will react (produce response). –X bonds or forms intermolecular bond to the active site.

Write an equation corresponding to the third ionisation enthalpy of Zinc.

 $Zn^{2+}(g) \rightarrow Zn^{3+}(g) + e^{-}$ must have **gas** state symbols and correct charges. Gaseous states for **all** ionisation enthalpies.

Explain why the second ionisation enthalpy of Calcium is smaller than the third ionisation enthalpy of calcium.

-(2nd IE) removing electron from <u>shell further</u> from <u>nucleus</u> **OR** (3rd IE) removing electron from <u>shell closer</u> to <u>nucleus</u> (If shell is full or not is **NOT** relevant)

-(2nd IE) (electron experiences) less attraction **OR** (3rd IE) (electron experiences) more attraction from nucleus.

Define the term electronegativity.

The ability of an atom to attract electrons in a (covalent) bond.

Carboxylic acid naming challenges?

Carboxylic acid group dominates and <u>takes carbon number 1</u> and name will end in - oic acid.

CH₃CH(OH)CH₂COOH 3-<u>hydroxy</u>butanoic acid.

CH₃CH₂CH(CH₃CH₂)COOH 2-ethylbutanoic acid (NOT 3-carboxyhexane or other creative ideas!)

What name is given to the functional group in $H_3C-O-CH_3$? -ether

What name is given to the group $-SO_3H$ and $-SO_3^-$ -sulfonic acid and sulfonate.

What is meant by unsaturation in fatty acids? The presence of C=C /alkene groups.

E/Z (trans/cis) isomerism

-the C=C double bond prevents rotation

-there must be two different groups on each **carbon** of the Carbon –carbon double bond.

Explain why the E(trans) form of an unsaturated fatty acid has a higher melting point than the Z(cis) version.

-molecules/chains can pack/ line up together more <u>closely</u>.
-<u>intermolecular</u> bonds are <u>stronger</u>. (NOT "more" imb's, not covalent bonds)
-<u>more energy</u> required to melt/break i.m.b's. (Not break covalent bonds)

What is an enantiomer (optical isomer)? A non-superimposable mirror image.

Explain the meaning of the term "pharmacophore"

<u>part</u>/area/region of the <u>molecule</u>/structure/compound that *either* binds/bonds/fits to a receptor/enzyme/active site *or* is responsible for the medicinal/pharmacological action of the drug

Explain how inhibitors slow down the rate of an enzyme-catalysed reaction. (inhibitor) binds with / forms bonds with / fits into the active site (of the enzyme)

(inhibitor) blocks the active site/receptor site **OR** competes with the substrate **OR** substrate cannot bind/fit/react (with the active site) **OR** stops substrate being broken down/reacted/catalysed **OR** fewer/less active sites available

A substance used as an antidote for arsenic poisoning is itself toxic. Suggest a test chemists would do before this drug is allowed to be used.

-Determining a safe dose of the chemical.

-Determining how toxic it is compared to arsenic.

An insecticide is toxic to people and animals. Suggest 2 arguments that farmers may give to be able to continue using this product.

-no effective alternatives available

-it can be used with suitable care or in low concentrations.

-it is needed to produce a better yield of food or to boost crop profit/keep food price cheap.

Identify some of the steps involved in going from discovering a substance discovered in fungi to a synthetic statin for medical use.

show that a compound has medicinal properties (identify "lead" compound) analyse/work out structure/ identify pharmacophore synthesise (similar molecules)

clinical trials (may include animal/ethical testing, checking for side effects) (not just "trials")

What is an electrophile?

-molecule/ion with partial positive/ **positive** charge -attracted to regions of high electron density/negative charge -**accepts** a pair of electrons to form a covalent bond.

Give the conditions needed for the coupling reaction between a diazonium salt and an aromatic amine or phenol to make an azo dye.

-alkali(ne) conditions/ NaOH

-low temperature/ below 10 $^{\circ}$ C

Why is an ionic substance soluble in water?

- <u>Ionic</u> bonds in the lattice have to be broken and <u>hydrogen bonds</u> between water molecules have to be **broken** – requires energy (endothermic).
- Ion-dipole bonds formed between water molecules and ions.
- Forming ion-dipole bonds releases energy (exothermic).
- If more energy released than put in then substance is likely to be soluble (if ion-dipole bonds stronger/similar in strength to the ionic and hydrogen bonding they replace).

Name the forces between Ca²⁺ and water molecules in a hydrated calcium ion. -<u>ion-dipole</u> bonds/forces (NOT ionic-dipole)

Why is a non-polar molecule (e.g octan-1-ol) more soluble in a triglyceride oil than in water?

-main intermolecular bonds between non-polar molecules/hydrocarbon chains = idid (limited pd-pd / Hbonds if polar/OH group present).

Main intermolecular bonds in triglycerides also = id-id

Main intermolecular bonds between water molecules = H bonds

Non-polar molecules only able to form weak id-id bonds to water, much weaker than H-bonds.

Dissolving only favoured if **weaker bonds replaced by stronger/similar ones** – can't happen in water as H-bonds so strong, but possible in oil as id-id bonds similar in strength. (Would disrupt the strong H-bonding between water molecules). -More energy should not be used to break bonds than is released in making bonds if

-More energy should not be used to break bonds than is released in making bonds dissolving is to be favourable.

Describe a hydrogen bond (or drawing a diagram of H-bonds).

-<u>lone pair</u> on O (N or F) forms attraction to <u>delta-positive H</u>-atom joined to O (N or F). – Hydrogen is delta positive due to large electronegativity difference between H and O (N or F). A <u>diagram</u> often helps to answer this question even when not explicitly asked for

Diagrams of H-bonds: ensure lone pair looking <u>down</u> H-bond, hatched/ dashed lines used to indicate H-bond,

straight line through H-O: ---H-O or H-N: --- H-N , H-O:---H-N etc.

Put in the vital partial (delta) charges on O, N, F (delta minus) and correct H (delta plus) !

What is the intermolecular bond between non-polar molecules and how is it formed.

Non-polar molecules only have <u>instantaneous dipole-induced dipole</u> intermolecular bonds. Random <u>movement of electrons</u> in molecule creates <u>uneven dist</u>ribution of charge (=<u>instantaneous dipole</u>).

This <u>induces a dipole</u> in a <u>neighbouring molecule</u> leading to an <u>attraction</u>. <u>Molecules with more electrons</u> will <u>form stronger intermolecular bonds</u>. <u>More energy</u> will needed to <u>overcome/break</u> the stronger intermolecular bonds so <u>boiling</u> <u>point is higher</u>.

<u>NOTE</u> using the initials" id-id" or "pd-pd" without defining what they stand for is <u>NOT</u> acceptable.

Why would increasing pressure change the equilibrium position in $N_{2(g)} + 3H_{2(g)} \rightleftharpoons 2NH_{3(g)}$? Give a reason.

<u>Equilibrium position</u> will move to the <u>right/products</u>. (because) there are <u>more moles/molecules</u> (particles) on the <u>left</u>. ORA (NOT "more reactants than products" without mention of number of particles/moles.)

Why is very high pressure not used in practice (for an industrial process where raising pressure would increase yield)?

Achieving high pressure **very expensive** as need **thick walled pipes** and powerful pumps / compressors- high energy costs. (Increased risk injury from explosions). Cost saving compensates for fall in yield.

Why is high pressure used in a reaction where it would not increase equilibrium yield?

Faster rate of reaction. As more successful collisions per unit time / more frequent collisions.

Glycerin is a co-product in the manufacture of biodiesel from vegetable oil. Explain what is meant by the term *co-product* distinguishing it from *by-product*. (June 12) -co-product is formed in the same reaction that makes the main product.

-by-product is formed by side/other/unwanted reactions.

(Usual idea that co-products are useful products that can be sold whereas byproducts are not useful and have to be disposed not credited here but if added *as well* would not be CON.)

Le Chatelier Questions.

Talk about the equilibrium position and <u>yield</u> of product. -In the Haber process, increasing the pressure causes the **equilibrium position** to

shift to the right as this side has fewer moles of gas, <u>increasing yield</u> of NH₃. -When temperature is raised in the Haber process the **equilibrium position** shifts to the left (the <u>endothermic</u> direction), <u>decreasing the yield</u> of NH₃.

• If you have linked equilibria make sure you mention each equation -

Eg. Adding more $CO_{2(g)}$ causes equilibrium position in equation "3.1" to move to the right, this causes an increase in $CO_{2(aq)}$ causing equilibrium position in equation "3.2" to move to the right leading to an increase in HCO_3^- ion concentration.

Explain why an exothermic equilibrium process is actually carried out a high temperature.

Must make clear that the <u>increase in rate</u> makes up /compensates for the <u>fall in</u> <u>yield</u>. Idea of "compromise conditions" must mention rate and yield.

Why is the molecule CF₃Cl polar?

C-Cl and C-F bonds have different polarities

The <u>dipoles/charges</u> do <u>not cancel out</u> OR <u>centre of positive and negative charges</u> <u>don't</u> <u>coincide</u>

OR there is a greater (partial) negative charge on the F side of the molecule.

Describe the stationary and mobile phase in Gas-liquid chromatography (GLC.

Stationary phase = high boiling liquid on solid/silica support. Mobile phase = inert carrier gas such as N_2 or Ar. (don't confuse TLC and GLC!!).

A reaction involves the dehydration of an organic molecule. Give another name for this **type** of reaction.

<u>Elimination</u>. (NOT condensation which involves 2 or more molecules joining together with the elimination of a small molecule eg. Alcohol \rightarrow alkene +water = elimination, alcohol + carboxylic acid \rightarrow ester +water = condensation)

Disadvantages/advantages of adding N / nitrates to the soil.

-N is essential nutrient for plant growth

-nitrates can be leached/washed out of soil into rivers/lakes where they can cause eutrophication.

Hazards of ...

CO – toxic, prevents oxygen uptake by binding to haemoglobin, contributes to photochemical smog. (NOT greenhouse gas). – (CO is made from incomplete combustion of hydrocarbons).

 CO_2 – green house gas, absorbs IR radiation, its bonds vibrate more when IR absorbed, increasing kinetic energy of the gas molecules = temperature rise. NO_x/SO_x – cause acid rain, toxic, irritant to respiratory system.

 NO_2 – toxic, causes acid rain (which kills trees, fish/ corrodes buildings), contributes to photochemical smog and (tropospheric) ozone formation.

 NH_3 – is alkaline/ toxic.

Cl₂ – toxic, damaging to respiratory system.

Ozone- toxic, contributes to photochemical smog, respiratory irritant.

N.B **HCI** (aq/g) "hydrochloric acid"= (<u>aq</u>) =corrosive

"hydrogen chloride" (g) = toxic

 $AlCl_3$ – aluminium compounds are toxic. Benzene = a carcinogen.

("harmful" and "polluting" are usually too woolly to get a mark in hazard questions).

Describe the importance to the environment of having industrial reactions with high atom economies.

-little waste/ most atoms or reagents used (Not: toxic or less raw materials needed)

What does the "V" in the name Calcium nitrate (V) indicate.

<u>oxidation</u> <u>state</u>/<u>number</u> of nitrogen/N (in the ion) **OR** nitrogen/N has oxidation state/number of (+) 5

Why is Calcium nitrate (V) used as a fertiliser?

(contains) N/nitrogen/nitrate which <u>crops/plants</u> need (as a nutrient) **OR** <u>soluble</u> source of nitrogen/nitrate.

How will feasibility of a reaction with known entropy change of system be affected as temperature rises if the enthalpy change of reaction is exothermic?

State : $\Delta S_{total} = \Delta S_{system} + \Delta S_{surroundings}$ $\Delta S_{surroundings} = -\Delta H / T$ will be <u>positive</u> as ΔH is negative. As temp (T) rises the value of - ($\Delta H / T$) decreases (value of ΔH is constant) (assume - unless told otherwise- that ΔS system is independent of temperature) so ΔS total becomes <u>smaller</u> and reaction becomes less feasible. To be feasible ΔS_{total} must be greater than zero / positive.