

MEI STRUCTURED MATHEMATICS

FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2

Practice Paper FP2-A

Additional materials: Answer booklet/paper

Graph paper

MEI Examination formulae and tables (MF2)

TIME 1 hour 30 minutes

INSTRUCTIONS

- Write your Name on each sheet of paper used or the front of the booklet used.
- Answer **all** the questions in Section A and **one** question from Section B.
- You **may** use a graphical calculator in this paper.

INFORMATION

- The number of marks is given in brackets [] at the end of each question or part-question.
- You are advised that you may receive **no marks** unless you show sufficient detail of the working to indicate that a correct method is being used.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The total number of marks for this paper is 72.

Section A (54 marks)

- 1 You are given the matrix $\mathbf{M} = \begin{pmatrix} 1 & 3 \\ 6 & -2 \end{pmatrix}$.
 - (i) Find the characteristic equation for the matrix \mathbf{M} . [2]
 - (ii) Hence find the eigenvalues, λ_1 and λ_2 , of **M** and the associated eigen vectors. [6]
 - (iii) Write down a matrix S such that $S^{-1}MS$ is a diagonal matrix.

Show that
$$\mathbf{S}^{-1}\mathbf{M}\mathbf{S} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{pmatrix}$$
. [6]

- (iv) Hence find \mathbf{M}^4 . [4]
- 2 (a) Sketch the polar curve $r = a\cos^2\theta$ for values of θ in the range $0 \le \theta < 2\pi$. [4]
 - **(b)** Series *C* and *S* are defined by

$$C = 1 + \binom{n}{1} \cos \theta + \binom{n}{2} \cos 2\theta + \dots \binom{n}{n} \cos n\theta$$
$$S = \binom{n}{1} \sin \theta + \binom{n}{2} \sin 2\theta + \dots \binom{n}{n} \sin n\theta$$

(i) By considering
$$C + jS$$
, show that $C + jS = (1 + e^{j\theta})^n$. [5]

(ii) Show that
$$(1+e^{j\theta}) = 2\cos\frac{\theta}{2}e^{\frac{j\theta}{2}}$$
 [4]

- (iii) Hence show that $C = 2^n \cos^n \frac{\theta}{2} \cos \left(\frac{n\theta}{2} \right)$ and find a similar expression for S. [5]
- 3 (a) Find the exact value of $\int_{-0.4}^{0.4} \frac{1}{25x^2 + 4} dx$. [5]

(b) (i) Find
$$\int \frac{1}{\sqrt{4-x^2}} \, dx$$
. [3]

(ii) Using integration by parts, show that
$$\int_0^{\sqrt{3}} \arcsin\left(\frac{x}{2}\right) dx = \frac{\pi}{\sqrt{3}} - 1$$
. [10]

Section B (18 marks) Answer one question only

Option 1: Hyperbolic Functions

- 4 (i) By differentiating the equation $\tanh y = x$, show that $\frac{d}{dx}(\operatorname{artanh} x) = \frac{1}{1 x^2}$. [3]
 - (ii) Starting with the definitions $\sinh x = \frac{1}{2} \left(e^x e^{-x} \right)$ and $\cosh x = \frac{1}{2} \left(e^x + e^{-x} \right)$ show that $\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$. [4]
 - (iii) Use Maclaurin's expansion to find an expansion for ln(1+x) for terms up to and including that in x^3 . [5]
 - (iv) Hence derive an expansion for artanhx for terms up to and including x^3 . [3]
 - (v) State the domain of the function $y = \operatorname{artanh} x$ and sketch the graph of $y = \operatorname{artanh} x$. [3]

Option 2: Investigation of curves

A graphical calculator is required for this question.

5 The graphs of $x = \frac{t^2}{t-1}$ and $y = \frac{t^3}{t-1}$ are shown in Fig. 5a and Fig.5b below.

Fig. 5a

Fig. 5b

- (i) Write down the values of t corresponding to the vertical asymptotes in Fig.5a and Fig. 5b. [1]
- (ii) Show that the two stationary points on the graph $x = \frac{t^2}{t-1}$ occur at t = 0 and t = 2. The two stationary points on the graph $y = \frac{t^3}{t-1}$ occur at t = 0 and another value of t. Find this value of t.

The curve, C, with parametric equations $x = \frac{t^2}{t-1}$, $y = \frac{t^3}{t-1}$ has two distinct branches. One of these is shown in Fig. 5c below.

Fig. 5c

- (iii) Using your graphical calculator, draw a sketch of the curve C showing both branches. Identify the point on C corresponding to t = 0 and describe this point. [3]
- (iv) Find both the non-zero values of t and the cartesian coordinates of the points where the tangent to C is
 - (A) parallel to the y-axis,

(v) By annotating a copy of the graph of C, clearly describe how the curve C unfolds as the parameter, t, increases from -10 to +10.Indicate increasing values of t by drawing arrows on your curve. [4]

MEI STRUCTURED MATHEMATICS

FURTHER METHODS FOR ADVANCED MATHEMATICS, FP2

Practice Paper FP2-A

MARK SCHEME

Qu		Answer	Mark	Comment			
Section A							
1	(i)	$\begin{vmatrix} 1-\lambda & 3 \\ 6 & -2-\lambda \end{vmatrix} = 0 \Rightarrow (1-\lambda)(-2-\lambda)-18 = 0$	M1				
		$\Rightarrow -2 + \lambda + \lambda^2 - 18 = 0 \Rightarrow \lambda^2 + \lambda - 20 = 0$	A1 2				
	(ii)	$\lambda^2 + \lambda - 20 = 0$	M1				
		$\Rightarrow (\lambda + 5)(\lambda - 4) = 0 \Rightarrow \lambda = -5, 4$	A1				
		For $\lambda = -5$, $\begin{pmatrix} 1 & 3 \\ 6 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = -5 \begin{pmatrix} x \\ y \end{pmatrix}$	M1 A1				
		$\Rightarrow x + 3y = -5x$					
		$\Rightarrow y = -2x$					
		$\Rightarrow s_1 = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$	A1				
		For $\lambda = 4$, $\begin{pmatrix} 1 & 3 \\ 6 & -2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 4 \begin{pmatrix} x \\ y \end{pmatrix}$					
		$\Rightarrow x + 3y = 4x$					
		$\Rightarrow y = x$					
		$\Rightarrow s_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$	A1 6				
	(iii)	$S = (s_1, s_2) = \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$	B1				
		$S^{-1} = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$	M1				
		$S^{-1}MS = \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 6 & -2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix}$	A1 A1				
		$= \frac{1}{3} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} -5 & 4 \\ 10 & 4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} -15 & 0 \\ 0 & 12 \end{pmatrix}$					
			M1				
		$= \begin{pmatrix} -5 & 0 \\ 0 & 4 \end{pmatrix}$	A1 6				
		$(S^{-1}MS)^4 = \begin{pmatrix} -5^4 & 0\\ 0 & 4^4 \end{pmatrix} = S^{-1}M^4S$	M1				
		$\Rightarrow M^{4} = \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 5^{4} & 0 \\ 0 & 4^{4} \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix}$	A1				
		$= \frac{1}{3} \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} \begin{pmatrix} 5^4 & -5^4 \\ 2.4^4 & 4^4 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 5^4 + 2.4^4 & -5^4 + 4^4 \\ -2.5^4 + 2.4^4 & 2.5^4 + 4^4 \end{pmatrix}$	A1				
		$= \frac{1}{3} \begin{pmatrix} 1137 & -369 \\ -738 & 1506 \end{pmatrix} = \begin{pmatrix} 379 & -123 \\ -246 & 502 \end{pmatrix}$	A1 4				

2	(a)		B1	For $0 < \theta < 90$
			B1	For $90 < \theta < 180$
		*	B1	For $180 < \theta < 270$
			B1	For $270 < \theta < 360$
			4	
	(b) (i)	$C + jS = 1 + \binom{n}{1} (\cos \theta + j\sin \theta) + \binom{n}{2} (\cos 2\theta + j\sin 2\theta) + \dots$	B1	
		$=1+\binom{n}{1}e^{j\theta}+\binom{n}{2}e^{2j\theta}+\ldots+\binom{n}{n}e^{nj\theta}$	M1 A1	
		$= \left(1 + e^{j\theta}\right)^n$	A1 A1 5	
		0 0	M1	
	(ii)	$1 + e^{j\theta} = 1 + \cos\theta + j\sin\theta = 2\cos^2\frac{\theta}{2} + 2j\sin\frac{\theta}{2}\cos\frac{\theta}{2}$	A 1	
		$= 2\cos\frac{\theta}{2}\left(\cos\frac{\theta}{2} + j\sin\frac{\theta}{2}\right) = 2\cos\frac{\theta}{2}e^{\frac{j\theta}{2}}$	M1 A1 4	
	(iii)	$C + jS = \left(1 + e^{j\theta}\right)^n = \left(2\cos\frac{\theta}{2} \cdot e^{\frac{1}{2}j\theta}\right)^n = 2^n \cos^n\frac{\theta}{2} e^{\frac{jn\theta}{2}}$	M1	
		$=2^{n}\cos^{n}\frac{\theta}{2}\left(\cos\frac{n\theta}{2}+\sin\frac{n\theta}{2}\right)$	A1	
		Equating real parts $\Rightarrow C = 2^n \cos^n \frac{\theta}{2} \cdot \cos \frac{n\theta}{2}$	A1 M1	
		Equating imaginary parts $\Rightarrow S = 2^n \cos^n \frac{\theta}{2} \cdot \sin \frac{n\theta}{2}$	A1 5	
	1			

3	(a)	$\int_{-0.4}^{0.4} \frac{1}{25x^2 + 4} \mathrm{d}x = \left[\frac{1}{10} \arctan\left(\frac{5x}{2}\right) \right]_{-0.4}^{0.4}$	M1 A1 A1	For 1/10 For 5x/2
		$= \frac{1}{10} \left(\arctan 1 - \arctan \left(-1 \right) \right)$	M1	101 33/12
		$=\frac{1}{10}\left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right) = \frac{\pi}{20}$	A1 5	
	(b) (i)	$\int \frac{1}{\sqrt{4-x^2}} \mathrm{d}x = \arcsin\left(\frac{x}{2}\right) + c$	M1 A1 A1 3	Style of integral Arcsin Divide by 2
	(b) (ii)	$I = \int_0^{\sqrt{3}} \arcsin\left(\frac{x}{2}\right) dx$	M1	
		$u = \arcsin\left(\frac{x}{2}\right)$ $dv = dx$	A1	
		$\Rightarrow du = \frac{1}{\sqrt{4 - x^2}} dx v = x$	A1 A1	
		$= \left[x \arcsin\left(\frac{x}{2}\right) \right]_0^{\sqrt{3}} - \int_0^{\sqrt{3}} \frac{x}{\sqrt{4 - x^2}} \mathrm{d}x$	A1 A1	
		$= \left(\sqrt{3}\frac{\pi}{3} - 0\right) - \left[-\sqrt{4 - x^2}\right]_0^{\sqrt{3}}$	M1	
		$= \sqrt{3} \frac{\pi}{3} - \left(-\sqrt{1} - (-2)\right) = \sqrt{3} \frac{\pi}{3} - 1$	A1 A1 A1	
			10	

4	(i)	$tanh \dots \rightarrow aach^2 \dots dy$	M1		Diffn implicitly
		$\tanh y = x \Longrightarrow \operatorname{sech}^2 y \frac{\mathrm{d}y}{\mathrm{d}x} = 1$	A1		
		$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{\mathrm{sech}^2 y} = \frac{1}{1 - \tanh^2 y} = \frac{1}{1 - x^2}$	A1	3	
	(ii)	$ sinh x = \frac{1}{2} (e^x - e^{-x}), cosh x = \frac{1}{2} (e^x + e^{-x}) $	M1		
		$\tanh x = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1}$	A1		
		Let $y = \operatorname{artanh} x$; then $x = \tanh y = \frac{e^{2y} - 1}{e^{2y} + 1}$	M1		Change subject and
		$\Rightarrow \left(e^{2y}+1\right)x = e^{2y}-1$			take logs
		$\Rightarrow e^{2y}(x-1) = -1 - x$			
		$\Rightarrow e^{2y} = \frac{1+x}{1-x} \Rightarrow 2y = \ln\left(\frac{1+x}{1-x}\right)$			
		$\Rightarrow \operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$	A1	4	
	(iii)	$f(x) = \ln(1+x) \Rightarrow f(0) = 0$	M1		
		$f'(x) = \frac{1}{1+x} \Rightarrow f'(0) = 1$	A1		
		$f''(x) = -1(1+x)^{-2} \Rightarrow f''(0) = -1$	A1		
		$f'''(x) = 2(1+x)^{-3} \Rightarrow f'(0) = 2$	A1		
		$\Rightarrow y = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$	A1	5	
	(iv)	$\operatorname{artanh} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) = \frac{1}{2} \left(\ln \left(1+x \right) - \ln \left(1-x \right) \right)$	M1		
		$= \frac{1}{2} \left(\left(x - \frac{x^2}{2} + \frac{x^3}{3} \right) - \left(-x - \frac{x^2}{2} - \frac{x^3}{3} \right) \right)$	B1		Ability to write an expansion for
		$= \frac{1}{2} \left(2x + \frac{2x^3}{3} \right) = x + \frac{x^3}{3} + \dots$	A1	3	ln(1-x) from their $ln(1+x)$
	(v)	Domain is $ x < 1$	B1		Domain
		3 2 1	B1 B1		General shape Asymptotes clear
		-2 -1 2 -2 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3			
		-4		3	

5	(i)	t = 1	B1 1	
	(ii)	$\frac{dx}{dt} = \frac{(t-1)2t - t^2}{(t-1)^2} = \frac{t^2 - 2t}{(t-1)^2}$	M1 A1	
		$= 0 \text{ when } t^2 - 2t = 0 \Rightarrow t = 0, 2$		
		$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{(t-1)3t^2 - t^3}{(t-1)^2} = \frac{2t^3 - 3t^2}{(t-1)^2}$	M1	
		$= 0 \text{ when } 2t^3 - 3t^2 = 0 \Rightarrow t = 0 \text{ (twice) and } t = \frac{3}{2}$	A1 4	
	(iii)			
		10 y 5 -10 -5 10	B2	Graph
		-10		
		The origin is a cusp	B1 3	
	(iv)	$\frac{dy}{dx} = \frac{t(2t-3)}{t-2}$ (A) When $t = 2$, the point is (4, 8)	M1 A1 B1 B1	
		(B) When $t = 1.5$, the point is $(4.5, 6.75)$	B1 B1 6	
	(v)	10 x y	B1	Branches $-10 < t < 0$
		0 < t < 1	B1	0 < <i>t</i> < 1
		t=0	B1	1 < <i>t</i> < 10
		-10	B1	All arrows correct
		-10 < t < 0	4	
		-10 ¹		