Teacher Resource Bank

GCE Biology

Students' Statistics Sheet (version 3)

AQA Students' Statistics Sheet (version 3)

Standard error and 95\% confidence limits

Calculate the standard error of the mean, $S E$, for each sample from the following formula

$$
S E=\frac{S D}{\sqrt{n}}
$$

where $S D=$ the standard deviation
and $n=$ sample size
95% confidence limits $=2 \times S E$ above and below the mean

The χ^{2} test

The chi-square $\left(\chi^{2}\right)$ test is based on calculating the value of χ^{2} from the equation

$$
\chi^{2}=\sum \frac{(O-E)^{2}}{E}
$$

where O represents the results you observe in the investigation and E represents the results you expect.

Table showing the critical values of χ^{2} at $P=0.05$ for different degrees of freedom

Degrees of Freedom	Critical value
1	3.84
2	5.99
3	7.82
4	9.49
5	11.07
6	12.59
7	14.07
8	15.51
9	16.92
10	18.31

Spearman rank correlation test

Calculate the value of the Spearman rank correlation, r_{s}, from the equation

$$
r_{s}=1-\left[\frac{6 \times \sum D^{2}}{n^{3}-n}\right]
$$

where n is the number of pairs of items in the sample and D is the difference between each pair of ranked measurements.

Table showing the critical values of r_{s} at $\mathrm{P}=0.05$ for different numbers of paired values

Number of pairs of measurements	Critical value
5	1.00
6	0.89
7	0.79
8	0.74
9	0.68
10	0.65
12	0.59
14	0.54
16	0.51
18	0.48

