
EMF  2005 Handout 3: Electric Flux and Gauss's Law 1

ELECTRIC FLUX AND GAUSS’S LAW
(Young & Freedman  Chap. 23)

(Ohanian  Chap. 24)

Electric flux, ΦΦ

Consider a small flat area dA.

Let E  be the electric field at its centre.

Assume that dA is so small that E  can be
regarded as uniform over the whole of dA.

Definition:  The ELECTRIC FLUX, dΦ
through the area dA is the product of dA
and the normal component of E .

or dΦ  =  (Ecosθ)dA  so  dΦ  =  AE d⋅

where Ad  is the NORMAL VECTOR of the area dA:

Magnitude of Ad  = dA
Direction of Ad  is perpendicular to dA

Note: 1. Electric flux is a SCALAR.

2. The electric flux through area dA can be thought of as the
 number of field lines crossing dA.

dΦ  =  E(dAcosθ)

= (No. of lines/unit area)(Projected area)

= No. of lines crossing dA

So far we’ve considered a UNIFORM field passing through a FLAT
surface.
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General case

Consider a NON-UNIFORM field E
passing through a NON-FLAT surface, A.

Divide A into many small elements (patches)
such as dA.

dA is small ⇒ (i) it’s approximately flat;

(ii) E  is uniform over dA.

⇒ Flux through dA is  dΦ  =  AE d⋅

To find the total flux through the whole surface, we INTEGRATE over the
whole of the area A:

∫=Φ
A

dA.E

Note: 1. By convention Ad  is taken to point outwards from the surface.

2. If the angle between E  and
Ad  is < 90o then dΦ is positive

If the angle between E  and Ad
is > 90o then dΦ is negative
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Example: Flux through a spherical surface with a point charge
Q at the centre.

1. E  is perpendicular to the surface
everywhere

⇒ E  and Ad  are parallel everywhere

⇒ AE d⋅ = EdA

2. E is the same for all points
on the surface (because they
are all at the same distance
from Q):
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But ∫
S

dA is just the surface area of the sphere  = 4πr2.

Therefore
o

Q
ε

=Φ   

Note: 1. Φ is independent of the distance from the charge, r.

2. Φ depends only on Q.
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More general example:

What is Φ through a CLOSED
surface of ANY shape due to a
point charge Q ANYWHERE
inside?

1. Imagine a small sphere with Q at its centre.

2. Any field lines ( ≡ Electric Flux) passing
through this sphere also pass through
the surface A.

3. Q/εo is the flux through the sphere.

4. Therefore Q/εo is also the flux through A.

Even more general example:

What is Φ through an ARBITRARY closed
surface containing total charge Qenclosed,
which is distributed in an ARBITRARY
way inside it?

RECALL:  THE PRINCIPLE OF SUPERPOSITION

E  due to a number of charges Qi is the vector sum of the E i due to the
individual charges

So: 1. Assume the charge distribution is made up of many small point 
charges ∆Qi.

2. Flux through surface from each of these is ∆Φ
∆

  =
Q i

oε
.

3. The total flux through the surface is the sum of all these
contributions:

o

enclosed
i

oo

i Q
Q1Q

ε
=∆

ε
=

ε
∆=Φ ∑∑        .

So the answer is still the same as before.

Arbitrary 3-D surface, A, with total charge
Qenclosed distributed in some arbitrary way inside

Arbitrary 3-D surface, A, with
charge Q somewhere inside

E

E
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What about the contribution to the flux through a closed surface
from a charge OUTSIDE it?

Clearly, any field line (electric flux)
that ENTERS the surface at one
point must LEAVE it at some
other point.

So the total flux through the
closed surface from an
external charge is ZERO.

CONCLUSION:  We have established a very general principle:

If the volume within an arbitrary closed surface contains a
total electric charge Qenclosed, then the total electric flux

through the surface is Qenclosed/εεo.

or:
o

enclosedQ
d

ε
==Φ ∫   A.E  

This is GAUSS’S LAW
MAXWELL’S 1st  EQUATION

Another way of expressing it:

The integral of E  over a closed surface is equal to the enclosed
charge divided by εo.

Note: 1. ∫A
 ⇒  integral over a surface.

∫ ⇒  integral over a CLOSED surface.

2. The surface is not necessarily a real one - we can specify
 ANY imaginary surface we want when using Gauss’s Law.
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When to use Gauss's Law

When you are given some CHARGE DISTRIBUTION and you want to
find the ELECTRIC FIELD.

How to use it:  a step-by-step procedure:

1. Determine the ELECTRIC FIELD PATTERN - draw diagram(s)
 showing the field lines

2. Choose the best GAUSSIAN SURFACE, to make things simple:

- Inevitably: cylinder, sphere or cube

- Try to make Ad  and E  either

PARALLEL: AE d⋅   =  EdA

or PERPENDICULAR: AE d⋅   =  0

3. Work out the SURFACE INTEGRAL   A.E  ∫=Φ d .

4. Decide how much charge is INSIDE the surface, Qenclosed.
Ignore any charge that is outside.

5. Set  Φ  =
Qenclosed

oε
 and rearrange the equation to find

the magnitude of E  as a function of charge and position.
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Examples of application of Gauss's Law

1. Electric field due to a point charge
2. Electric field due to an infinite line of charge
3. Electric field due to an infinite sheet of charge
4. Electric field due to a sphere of uniform charge density

See lecture notes

Conductors in electric fields

Using common sense arguments, we can show three important things
about how a conductor behaves in the presence of an electric field.

Recall:  In a conductor, charges
are free to move in response to an
electric field.

Consider a piece of conductor
placed in an applied electric field AE

Electrons move in a direction
opposite to AE

Negative charge builds up on the left
Positive charge is left behind on the right

These INDUCED CHARGES produce their own electric field, E i, which
OPPOSES AE .

If Ei < EA: electrons move to the left, making Ei increase
If Ei > EA: electrons move to the right, making Ei decrease

⇒  At equilibrium, E i  =  - AE ⇒  E total  =  0.

So,

1.     In equilibrium (ELECTROSTATICS) the electric field inside
a perfect conductor is zero.
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Using a similar argument, we can show that

2.     At the surface of a conductor, the electric field is perpendicular
to the surface.

Proof:  Imagine that, at some instant,
E  is NOT perpendicular to the surface.

Resolve E  into two components: one
parallel to the surface, IIE , and one

perpendicular, ⊥E .

Clearly, IIE  will cause charge to move across the surface

→ a separation of positive and negative charges
→ an opposing electric field which exactly cancels out IIE .

So, in equilibrium, the total component parallel to the surface is zero.

An important consequence of the fact that E  is zero inside a perfect
conductor is that

3.     In a perfect conductor, all excess charge resides at the surface

Proof:

E = 0 at all points on the
Gaussian surface

⇒ Φ  =  0  ⇒   Qenclosed  =  0.

⇒  all the excess charge must be on the surface.

Example

1. Electric field above a charged plane conductor

See lecture notes.

Conductor
Any Gaussian
surface inside it
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