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ELECTRIC FLUX AND GAUSS’S LAW
(Young & Freedman Chap. 23)
(Ohanian Chap. 24)

Electric flux, ®

Consider a small flat area dA.
Let E be the electric field at its centre. to dA

Assume that dA is so small that E can be N
regarded as uniform over the whole of dA.

Definition: The ELECTRIC FLUX, d®
through the area dA is the product of dA

— Area dA
and the normal component of E.

or d® = (Ecos®)dA so d® = E-dA
where dA is the NORMAL VECTOR of the area dA:

Magnitude of dA = dA
Direction of dA is perpendicular to dA

Note: 1. Electric flux is a SCALAR.

2. The electric flux through area dA can be thought of as the
number of field lines crossing dA.

Areas dA (seen edge-on)

\
\

(No. of lines/unit area)(Projected area) /\/
0
/

dd = E(dAcos6)

mi

No. of lines crossing dA

Projected
area dAcos6

So far we've considered a UNIFORM field passing through a FLAT
surface.
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General case

Consider a NON-UNIFORM field E
passing through a NON-FLAT surface, A.

Divide A into many small elements (patches)
such as dA.

dAissmall= (i) it's approximately flat;

(i) E is uniform over dA.

= Flux through dAis d® = E-dA

mij

To find the total flux through the whole surface, we INTEGRATE over the
whole of the area A:

¢=IE@K
A

Note: 1.By convention dA is taken to point outwards from the surface.

_ dA
2. If the angle between E and dd is positive

dA is < 90° then d® is positive

_ _ E
If the angle between E and dA
is > 90° then d® is negative

_d® is negative

dA



EMF 2005 Handout 3: Electric Flux and Gauss's Law 3

Example: Flux through a spherical surface with a point charge
Q at the centre.

N

1. E is perpendicular to the surface
everywhere

= E and dA are parallel everywhere

= E-dA=EdA

m|

pd

2. Eis the same for all points N
on the surface (because they
are all at the same distance
from Q):

d = IE.dK = JEdA = EjdA __Q QJdA
4er
A A A

But JdA is just the surface area of the sphere = 4nr®.
s

Therefore b = E

Note: 1. & is independent of the distance from the charge, r.

2. @ depends only on Q.
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More general example: N

What is & through a CLOSED
surface of ANY shape due to a
point charge Q ANYWHERE

inside? e

E

1. Imagine a small sphere with Q at its centre.

2. Any field lines ( = Electric Flux) passing
through this sphere also pass through
the surface A.

\4
3. Qg is the flux through the sphere. Arbitrary 3-D surface, A, with

4. Therefore Q/, is also the flux through A. charge Q somewhere inside

Even more general example:

What is @ through an ARBITRARY closed
surface containing total charge Qencloseds
which is distributed in an ARBITRARY

= - -

Arbitrary 3-D surface, A, with total charge
Qencloseq distributed in some arbitrary way inside

RECALL: THE PRINCIPLE OF SUPERPOSITION

E due to a number of charges Q; is the vector sum of the E; due to the
individual charges

So: 1. Assume the charge distribution is made up of many small point
charges AQ..

: AQ);

2. Flux through surface from each of these is A® = &
€o

3. The total flux through the surface is the sum of all these

contributions:
P = Z AQ; _ 1 AQ; = Qenclosed _

€o

So the answer is still the same as before.
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What about the contribution to the flux through a closed surface
from a charge OUTSIDE it?

Clearly, any field line (electric flux) 4\
that ENTERS the surface at one

oint must LEAVE it at some
p < N

other point.

So the total flux through the
closed surface from an
external charge is ZERO. \V

CONCLUSION: We have established a very general principle:

If the volume within an arbitrary closed surface contains a
total electric charge Qenciosed, then the total electric flux
through the surface is Qenclosed/€o-

or: ® = PEJA = Qenclosed
: £

This is GAUSS’S LAW
MAXWELL’S 1st EQUATION

Another way of expressing it:

The integral of E over a closed surface is equal to the enclosed
charge divided by &,.

~

Note: 1. = integral over a surface.
JA

~

= integral over a CLOSED surface.

o

2. The surface is not necessarily a real one - we can specify
ANY imaginary surface we want when using Gauss’s Law.
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When to use Gauss' s Law

When you are given some CHARGE DISTRIBUTION and you want to
find the ELECTRIC FIELD.

How to use it: a step-by-step procedure:

1.

Determine the ELECTRIC FIELD PATTERN - draw diagram(s)
showing the field lines

Choose the best GAUSSIAN SURFACE, to make things simple:

- Inevitably: cylinder, sphere or cube

- Try to make dA and E either

_Eg

m|

PARALLEL: -dA = EdA

or PERPENDICULAR: TE

m|
Q
>
I

o

Work out the SURFACE INTEGRAL & = ff E.dA .

Decide how much charge is INSIDE the surface, Qenclosed-
Ignore any charge that is outside.

Q . .
Set @ = —enclosed on4 rearrange the equation to find
€0

the magnitude of E as a function of charge and position.
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Examples of application of Gauss' s Law

Electric field due to a point charge

Electric field due to an infinite line of charge

Electric field due to an infinite sheet of charge

Electric field due to a sphere of uniform charge density

L=

See lecture notes

Conductors in electric fields

Using common sense arguments, we can show three important things
about how a conductor behaves in the presence of an electric field.

Recall: In a conductor, charges Ea

are free to move in response to an

electric field.

Consider a piece of conductor

placed in an applied electric field E,

Electrons move in a direction

HoH | | ][+

opposite to E,

Negative charge builds up on the left E: (dotted lines)
Positive charge is left behind on the right

These INDUCED CHARGES produce their own electric field, E;, which
OPPOSES E, .

If E; < Ea: electrons move to the left, making E; increase
If E; > Ea: electrons move to the right, making E; decrease

= Atequilibrium, E; = -E, = E = 0.
So,

1. In equilibrium (ELECTROSTATICS) the electric field inside
a perfect conductor is zero.
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Using a similar argument, we can show that

2. At the surface of a conductor, the electric field is perpendicular
to the surface.

Proof: Imagine that, at some instant,
E is NOT perpendicular to the surface.

Resolve E into two components: one
parallel to the surface, E|;, and one

perpendicular, E; .
Clearly, E; will cause charge to move across the surface

— a separation of positive and negative charges B
— an opposing electric field which exactly cancels out E,.

So, in equilibrium, the total component parallel to the surface is zero.

An important consequence of the fact that E is zero inside a perfect
conductor is that

3. In a perfect conductor, all excess charge resides at the surface

Proof: Any Gaussian

. Conductor surface inside it
E =0 at all points on the

Gaussian surface

= ® = 0 = Qenclosed = 0.

= all the excess charge must be on the surface.

Example

1. Electric field above a charged plane conductor

See lecture notes.



