

Answers to examination-style questions

Ans	wers	Marks Examiner's tips		
1 (a	(ii) fractional distillation (iii) contains only single bonds	1 You could also say that the C is always bonded to 4 other atoms – but don't say 4 H atoms because that would only give methane.		
) $C_{10}H_{22} + 5\frac{1}{2}O_2 \rightarrow 10C + 11H_2O$) (i) $\frac{1}{2}N_2 + \frac{1}{2}O_2 \rightarrow NO$	You can have double this value in all the substances in the equations if you don't like working with halves.		
	(ii) platinum or palladium or rhodium (iii) $2\text{CO} + 2\text{NO} \rightarrow 2\text{CO}_2 + \text{N}_2$ or $2\text{NO} \rightarrow \text{N}_2 + \text{O}_2$ or $C + 2\text{NO} \rightarrow \text{CO}_2 + \text{N}_2$ or $C_8\text{H}_{18} + 25\text{NO} \rightarrow 8\text{CO}_2 + 12\frac{1}{2}\text{N}_2 + 9\text{H}_2\text{O}$	 Equations are worth 1 mark and must be completely correct, i.e. the formulae and the balancing. 		
2 (a	 (i) C₈H₁₈ + 8½O₂ → 8CO + 9H₂O (ii) condition: spark or high T or T in range 2500–4000 °C equation: N₂ + O₂ → 2NO 	1 1 1		
(b) (i) platinum or rhodium or palladium	1		
(c)	contain sulfur impurities which burn to	1		
	give SO ₂ environmental effect of SO ₂ : acid rain or a specific effect explained, e.g. kills trees since the soil gets too acid	SO ₂ has no effect on the greenhouse effect or the ozone layer, so don't put either of them as your answers.		
	(i) fractional distillation (ii) C_9H_{20} only (iii) $C_{11}H_{24} + 17O_2 \rightarrow 11CO_2 + 12H_2O$ (iv) $C_{11}H_{24} + 6O_2 \rightarrow 11C + 12H_2O$ (i) $C_{10}H_{22} \rightarrow C_3H_6 + C_7H_{16}$	 1 1 When you balance combustion equations do the C first then the H and do the O last of all. 		
4 (a	 (i) compounds / alkanes with similar boiling points (ii) molecules have different boiling points or different chain lengths 	You must talk about 'similar' rather than the 'same'.		
	or different $M_{\rm r}$ (iii) the column has a higher temperature at the base	1		
	or the column has a lower temperature at the top	1		
	$C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O$ $C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O$ $C_8H_{18} + 8\frac{1}{2}O_2 \rightarrow 8CO + 9H_2O$	You could also say that arealring		
	cracking produces small molecules of alkenes and motor fuels, e.g. petrol	You could also say that cracking makes more useful products.		
(d	(i) carbocation(ii) zeolite or aluminosilicate or A1₂O₃	1		
(e)	homolytic fission or the C–C / C–H	1		
	(ii) alkenes	The alkenes are small-chain alkenes.		
	bonds break (ii) alkenes	1The alkenes are small-chain alkenes.		

Answers to examination-style questions

Answers			Marks	Examiner's tips
5	(a)	(i) a compound consists of hydrogen wand carbon only	1	
		(ii) release heat energy when burned	1	Don't say burns exothermically.
		(iii) $C_4H_{10} + 6\frac{1}{2}O_2 \rightarrow 4CO_2 + 5H_2O$	1	You can double all of this equation to get rid of the halves if you want to.
		(iv) $C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$	1	You can double all of this equation to get rid of the halves if you want to.
		(v) limited supply of air or oxygen	1	Don't say no oxygen.
	(b)	structure 2 structure 3	2	1 mark for each structure.
		CH ₃ CH ₂ CH ₃		
		either order		
	(c)	 (i) CH₃CH₃ → CH₂CH₂ + H₂ (ii) Al₂O₃ or zeolite or aluminosilicate (iii) more useful products implied 	1 1 1	
6	(a)	carbon only	1	
((b)	(ii) only single bonds(i) C₁₀H₂₂ only	1	Remember the general formula of the alkanes C_nH_{2n+2} . This is not $CH_3CH_2CH_2CH_2CH_2CH_2CH_2CH_2CH_3$
		(ii) $C_{14}H_{30} \rightarrow 2C_2H_4 + C_3H_6 + C_7H_{16}$ or $C_{14}H_{30} \rightarrow 4C_2H_4 + 2C_3H_6 + H_4$ alkene formula equation balanced (iii) homolytic fission	1 1 1	
	(a)	vapour passed into fractionating tower / column top of tower cooler than bottom	3 (max.)	There are 4 available marking points and you have to get at least 3, since the mark scheme says 3 marks.
	(b)	fractions separated by boiling points (i) identify shortfall in supply, e.g. petrol cracking produces more of the more	1	
		useful products (ii) motor fuels	1	
	(c)	aromatic hydrocarbons zeolite <i>or</i> aluminosilicate carbocation mechanism or heterolytic fission	1 1	
		high temperature <i>or</i> about 450 °C slight pressure, e.g. between 1 atm and 10 atm	1	Don't just say warm This is not high pressure.

Answers to examination-style questions

Answers

Marks Examiner's tips

- 8 (a) type of mechanism = free radical *or* homolytic fission $C_{21}H_{44} \rightarrow 3C_2H_4 + 2C_3H_6 + C_9H_{20}$ correct alkenes
 - equation balanced **(b) (i)** sulfur impurities burn to form SO₂
 - leading to acid rain *or* toxic product *or* respiratory problems

 ii) NO is formed by reaction between N₂ a
 - (ii) NO is formed by reaction between N_2 and O_2 from the air high combustion temperature or spark in engine provides sufficient heat energy to break $N \equiv N$
 - (iii) need to remove NO as forms acid rain or toxic product
 or causes respiratory problems
 2NO + O₂ → 2NO₂
 need to remove CO as it is poisonous use a catalytic converter
 uses Pt / Rh / Pd / Ir as catalyst in it

forms
$$N_2 + CO_2$$

2NO + 2CO $\rightarrow N_2 + 2CO_2$

1

1

1

1

1

1

1

1

1

- This can be given as an equation: e.g. $S + O_2 \rightarrow SO_2$ or $H_2S + 1\frac{1}{2}O_2 \rightarrow SO_2 + H_2O$
- This can be given as an equation: $N_2 + O_2 \rightarrow 2NO$

- 11Don't write a list. If one is right and one is wrong you lose the mark.
 - If you write a correct equation you are also saying what the products are, so a correct equation is worth the last 2 marks.