In a transmission electron microscope, electrons from a heated filament are accelerated through a certain potential difference and then directed in a beam through a thin sample. The electrons scattered by the sample are focused by magnetic lenses onto a fluorescent screen where an image of the sample is formed, as shown in the figure below.

(a)	State and explain one reason why it is important that the electrons in the beam have the same speed.

(2)

(b)	When the potential difference is increased, a more detailed image is seen. change happens.	Explain why this
		(3) (Total 5 marks)
The	diagram shows a block diagram of an audio recording system.	
	microphone 1 mixer microphone 2 mixer analogue to digital converter	ecorder
(a)	Explain the purpose of the mixer in this system.	
		(1)
(b)	Suggest a type of recorder that may be used in this system. Give one reason for your answer.	
		. (2)

	(c)	Explain one advantage of including the analogue to digital converter in the system.	
		(Total 5 m	(2) narks)
3	Figu	ure 1 shows a block diagram of a generalised communications system.	
	(a)	Complete the labelling of the block diagram, using the following terms:	
		carrier wave demodulator modulator receiver transmitte	er
		Figure 1	
		input transducer	
		transmission link	
		output transducer	
			(2)
	(b)	Name three different media suitable for the transmission link.	
		1	
		2	
		3	(3)

- (c) (i) State the function of the modulator.

 (1)
 - (ii) AM and FM are two types of modulation.An information signal and a carrier wave are shown on the upper axes of Figure 2.

Draw on the lower axes the AM signal and the FM signal that these would produce.

(Total 10 marks)

-
_
4
_

Name three different types of medium that a modulated carrier signal could travel through. (a)

1	
2	
_	
3	

(3)

(5)

A block diagram of a radio communication system is shown below. The signals between (b) subsystems are shown.

Label the blank boxes.

Page 5 of 20

(b)

A block diagram of a generalised communication system is shown below. The signals between subsystems have been numbered.

(a) The type of signal at number 1 is an information signal and at number 3 it is a modulated carrier wave.

State the type of signal that could be at

/:\	2	
(i)	2	(1)
(ii)	4	(1)
(iii)	5	(1)
` '		(1)
(iv)	6	(1)
Nam	ne a subsystem in the diagram above which could contain	
(i)	a diode	(1)
(ii)	an oscillator	(1)
. ,		(1)
(iii)	a loudspeaker	(1)
(iv)	a tuned circuit	

(1)

(Total 8 marks)

(b)

(c)

(a) A simple radio receiver system consists of the following subsystems.

af amplifier	aerial	detector	loudspeaker	tuned circuit
Label the diagran	n below with the s	subsystems in the	e correct order.	
		-	-	(5)
Which subsystem	n has an input tha	nt is		(0)
(i) a narrow ra	nge of modulated	d radio frequency	signals	(1)
(ii) a wide rang	e of modulated ra	adio frequency si	gnals	
(iii) a large amp	olitude audio frequ	uency signal		(1)
(iv) a small amp	olitude audio freq	uency signal?		
Describe the fund	ction of the detect	or.		

(Total 11 marks)

7

Part of a communication system has the following subsystems:

carrier generator input transducer modulator transmitter

(a) Draw a labelled block diagram to show how these subsystems are connected.

		on it	s input signal(s) and the form taken by its output signal.	
		(i)	carrier generator	
		/::\		(2)
		(ii)	input transducer	
		(iii)	modulator	(2)
				(3)
		(iv)	transmitter	
				(2) (Total 12 marks)
8	(a)	Des	cribe what is meant by amplitude modulation (am).	
				(1)
	(b)		dio wave has an unmodulated frequency of 120 kHz. It is amplitude modula al from an audio transducer of frequency 2.2 kHz.	ited by a
		Calc	culate the bandwidth of the modulated wave.	

Describe the operation of each of the subsystems in part (a), stating for each one its action

(b)

(c)	Explain why frequency modulation (fm) is not used for commercial radio transmissions in the medium and long wave bands.
	(1)
(d)	State and explain one advantage of transmitting digital signals using frequency modulation (fm) rather than amplitude modulation (am).
	(2) (Total 5 marks)
	ern UK passports contain a Radio Frequency Identification Device (RFID) chip connected to il of wire.
	RFID
	coil
	passport page
(a)	The RFID chip operates at a frequency of 13.56 MHz. The RFID chip has an effective capacitance of 20 pF in parallel with the coil. Calculate the required inductance of the coil.
	(4)

(b)	wire is used at the immigration control desk for reading the data on the RFID instead.	
		(3)
(c)	The quality factor, Q, of a tuned circuit is $\frac{f}{\Delta f}$.	
	If the bandwidth, Δf , of the tuned circuit in a passport is 100 kHz, calculate the quality factor of the tuned circuit.	
		(1)
(d)	Assume the bandwidth given in part (c) represents the highest bit rate that can be used to transfer data from the RFID. Estimate, using a calculation, the length of time it would take to read 1 KB of data.	
	(Total 10 ma	(2) arks)

- (a) An information signal and a carrier wave are shown on the axes below. Show how these can be combined to form
 - (i) an AM signal
 - (ii) an FM signal.

(i) AM signal

(3)

(ii) FM signal

(3)

	(b)	The	information signal has a maximum frequency of 3 kHz.	
		(i)	Calculate the bandwidth of the resulting AM signal.	
				(1)
		(ii)	The maximum frequency deviation of the FM carrier is \pm 5 kHz. Calculate the practical bandwidth of the resulting FM signal.	
			(Total 9 mai	(2) rks)
11	(a)	A ra	dio transmitter system consists of the four subsystems.	
		Labe	el the diagram below with the names of each subsystem.	
			Sound Waves Radio Waves	
	(b)	(i)	Which one of the subsystems above produces an unmodulated rf signal and may contain a tuned circuit?	(4)
		(ii)	The tuned circuit contains a 5 pF capacitor and a 0.1 µH inductor. Calculate the frequency of the signal that the subsystem produces.	(1)
				(3)

c)	A DAB transmitter has a frequency of 227.36 MHz. Calculate the length of a half-wave dipole that would be suitable for use as an aerial for this transmitter.
	(2)
	(Total 10 marks)

Mark schemes

1	(a)	force on an electron in a magnetic field depends on speed (1) electrons at different speeds would be focussed differently so image would be blurred (1) [or electrons at different speeds would have different (de Broglie) wavelengths therefore resolution would be reduced]	2	
	(b)	increase in pd increases speed (1) increase in speed/momentum/ E_k causes reduction of (de Broglie) wavelength (1)		
		reduced (de Broglie) wavelength gives better resolution (1)	3	[5]
2	(a)	Balances the relative strength / voltages / currents / intensity / signal / loudness / output from the two microphones / combines the signals to form one signal Condone power Not 'sorts the relative strengths' Allow merges		
			B1	1
	(b)	CD or named digital recorder Only allow magnetic media if clear mention of digital		
		(A to D converter means) digital recorder is needed	B1	
		Computer / mobile phone / ipad / MP3 because it processes digital data		
			B1	

(c) Noise reduction

When recovering of original digital signal during playback or

Less storage per file or shorter download time per file due to compression of digital signal

Allow for 1 mark

- concept of restoring the original signal more easily
- 'faithful' multiple copies
- ease of manipulation of data

Not easier to store

В1

B1

² [5]

(a)

3

transmitter & receiver, carrier wave gen ✓ demodulator & modulator ✓

2

(b) e.g. free space optical fibre twisted pair coax cable (any 3 √√√)

1 (ii) AM - constant frequency sinusoidal wave matching carrier wave ✓ amplitude varies in phase with information signal ✓ FM - constant amplitude sinusoidal wave ✓ frequency varies in phase with information signal ✓ [10] (a) (any order) 1 free space√ 2 wires (twisted pair, coaxial etc.) √ 3 fibre√ 3 (b) modulator transmitter carrier generator receiver demodulator 5 [8] (a) (i) unmodulated carrier wave / sine wave / blank carrier etc√ 5 1 (ii) electromagnetic signal / modulated radio wave / ray in fibre etc√ 1 (iii) modulated carrier wave√ 1 (iv) information signal / recovered information signal / baseband signal etc√ 1 (b) (i) demodulator (could also be modulator)√ 1 (ii) carrier generator(may also be demodulator)√ 1 (iii) output transducer√ 1

superimpose the information signal onto the carrier wave ✓

(c)

(i)

(a) amplitude of carrier varies in phase with information / audio signal √
accept labelled diagram in support

1

(b) $2 \times 2.2 \text{ kHz} = 4.4 \text{ kHz} \checkmark$

1

(c) requires a large bandwidth so would limit the number of channels / stations if low frequency carriers were used√

1

(d) Noise distorts the amplitude of signals which is difficult to reduce in am√ In fm the original signal can be recovered as long as the frequencies in the BW are detectable since no information in the amplitude. √ In AM receivers signals and noise are amplified equally. ANY TWO

[5]

9

(a) use of f = 1 / $2\pi\sqrt{LC}$, change subject to L = 1 / $4\pi^2f^2C$ substitute values, calculation , leading to $6.9\mu H \sqrt{\sqrt{\sqrt{A}}}$

4

2

(b) use of λ = c / f, substitute values leading to 22.1m √ dipole = 11.05m √ too large for desk operation √

3

(c) $13.56 / 0.1 = 136 \checkmark$ (could be rounded down to 135)

1

2

(d) 1KB = 8192 bits (allow 8000)√
 8192 / 100000 = 0.082s
 (or allow values based on 8000, 0.08s) regardless of these variations, time to download centres on 80ms√

[10]

(a)

const freq
amplitude
varies
in phase with
info sig

const ampl√ frequency varies√ in phase with info sig√

(b) (i) $2 \times 3 \text{ kHz} = 6 \text{kHz} \sqrt{}$

1

2

6

(ii) $2(3+5)\sqrt{ } = 16kHz\sqrt{ }$

[9]

11

(a)

- (b) (i) carrier generator√
 - (ii) use of $f = 1 \div 2\pi \sqrt{\text{LC}}\sqrt{1 \div 2\pi \sqrt{10^{-7} \times 5 \times 10^{-12}}} \sqrt{225 \text{ MHz}}$
- (c) calc leading to $\lambda = 1.32 \text{m} \checkmark$ $1.33 \div 2 = 0.66 \text{m} \checkmark$

[10]

1

3