

GCE AS & A2 Chemistry

Acceptable Colour Changes

Effective from January 2011

Unit AS 1: Basic Concepts in Physical and Inorganic Chemistry

N.B. It should be noted that the exact colour of a solution often depends on the concentration and the following are based on solutions of normal laboratory concentration.

The following are used as standard conventions throughout this document:

- 1. A forward slash (/) indicates each alternative will be accepted e.g. the sodium flame colour is given as yellow/orange so either yellow or orange will be accepted.
- 2. A hyphen (-) indicates that both colours are required e.g. bromine liquid is described as red-brown so red or brown will not be accepted.
- 3. Make a solution means dissolve in water.

Content	Paragraph		Observation
1.2 Atomic structure	1.2.16	Flame colours:	
structure		Li ⁺	Crimson
		Na ⁺	Yellow/Orange
		K^+	Lilac/Pink through cobalt glass
		Ca ²⁺	Brick red
		Ba ²⁺	Green
		Cu ²⁺	Green-blue/Blue-green
1.8 Group VII	1.8.1	Fluorine	Yellow gas
(fluorine, chlorine,		Chlorine	Green/Yellow-green/Green- yellow gas
bromine		Bromine	Red-brown liquid (and vapour)
and iodine		Iodine solid	Grey-black/Black
		Iodine vapour	Violet/Purple
	1.8.2/1.8.6	Chlorine water Bromine water Iodine solution	pale green/colourless yellow/orange/brown yellow/brown: polar solvents violet/purple: non-polar solvents
	1.8.7	Iron (II) solution Iron (III) solution	pale green yellow/orange
		Solid halides with concentrated sulphuric acid:	
		Fluoride Chloride Bromide	steamy/misty fumes (of HF) steamy/misty fumes (of HCl) steamy/misty fumes (of HBr); red-brown vapour (Br ₂)

		Solid halides with (cont.) Iodide	steamy/misty fumes (of HI); violet/purple vapour (I ₂); smell of rotten eggs (H ₂ S); yellow solid (S); grey-black/black solid (on the sides of the test-tube) (I ₂)
	1.8.11	Silver chloride Silver bromide Silver iodide	white cream yellow
1.9 Titrations	1.9.2	Methyl orange	Acid – red/pink Alkali – yellow
		Colour change at end-point:	
		adding acid to alkali	-
		adding alkali to acid	red/pink to orange/yellow
		Phenolphthalein	Acid – colourless Alkali – pink/red
		Colour change at	end-point:
		0	pink to colourless
		adding alkali to acid	colourless to pink

Content	Paragraph		Observation
2.12 Qualitative	2.12.1	Gas tests	
analysis		тт	· · · · · · · · · · ·
		H ₂	gives a 'pop' with a burning splint
		O ₂	relights a glowing splint
		Cl_2	bleaches damp litmus/universal
		2	indicator paper
		CO_2	bubble through limewater;
			limewater turns cloudy/milky
		SO ₂	turns potassium dichromate
			(VI) solution from orange to
			green/turns potassium manganate (VII) solution form
			purple/pink to colourless
		HCl	white fumes/smoke with
			stopper from bottle of
			concentrated ammonia
			solution/glass rod dipped in
		NUL	concentrated ammonia solution
		NH ₃	white fumes/smoke with stopper from bottle of
			concentrated hydrochloric
			acid/glass rod dipped in
			concentrated hydrochloric acid
	2.12.2	Flame colours	
		Li ⁺	Crimson
		Na ⁺	Yellow/Orange
		K^+	Lilac/Pink through cobalt glass
		Ca ²⁺	Brick red
		Ba^{2+}	Green
		Cu ²⁺	Green-blue/Blue-green
	2.12.3	SO ₄ ²⁻	make a solution and add dilute
			HCl/HNO ₃ followed by a
			solution of Ba ²⁺ ions – forms a
			white precipitate
		HCO_{3}^{-}/CO_{3}^{2-}	add dilute HCl to form
			colourless gas which turns lime
			water cloudy/milky; make a
			solution and add a solution of
			Mg^{2+} ions – CO_3^{2-} forms a white
			precipitate, no effect on HCO_3^-

Unit AS 2: Further Physical and Inorganic Chemistry and Introduction to Organic Chemistry

	TT 1-	1 1 ' 1 1 1 1 '
	Hal	make a solution and add dilute nitric acid followed by silver nitrate solution, then note the following:
	Cl-	white precipitate, soluble in dilute ammonia solution
	Br	cream precipitate, soluble in concentrated ammonia solution
	I	yellow precipitate, insoluble in concentrated ammonia solution
2.12.4	Ba ²⁺	yellow precipitate with a solution of potassium chromate, soluble in hydrochloric acid to give a yellow solution
	Cu ²⁺	blue precipitate on addition of a few drops of dilute ammonia solution which dissolves in excess of the ammonia solution to form a dark/deep blue solution
	NH4 ⁺	heat with dilute sodium hydroxide; the gas given off gives white fumes/smoke with stopper from bottle of concentrated hydrochloric acid/glass rod dipped in concentrated hydrochloric acid
	Fe ²⁺ and Fe ³⁺	add dilute sodium hydroxide solution; Fe ²⁺ gives a green precipitate and Fe ³⁺ gives a rust/brown precipitate
	Al ³⁺ , Mg ²⁺ and Zn ²⁺	1. add a few drops of dilute sodium hydroxide solution. Al^{3+} , Mg^{2+} and Zn^{2+} all form a white precipitate. The Al^{3+} and Zn^{2+} precipitates are soluble in excess of the sodium hydroxide solution; the Mg^{2+} precipitate is insoluble in excess of the sodium hydroxide solution

	2. add a few drops of dilute ammonia solution. Al^{3+} , Mg^{2+} and Zn^{2+} all form a white precipitate. The Zn^{2+} precipitate is soluble in excess of the ammonia solution; the Al^{3+} and Mg^{2+} precipitates are insoluble in excess of the ammonia solution
Fe ³⁺	add potassium thiocyanate solution and a blood red solution is formed

Content	Paragraph	Observation
4.7 Aldehydes	4.7.8	Aldehydes and ketones form yellow/orange
and		precipitates in the presence of 2,4-
ketones		dinitrophenylhydrazine
	4.7.10	Aldehydes can be distinguished from ketones as they: turn acidified (potassium) dichromate solution from orange to green;
		form a red precipitate when heated with Fehling's solution;
		form a silver mirror when heated with Tollen's reagent

Unit A2 1: Periodic Trends and Further Organic, Physical and Inorganic Chemistry

Unit A2 2: Analytical, Transition Metals, Electrochemistry and Further Organic Chemistry

Content	Paragraph	Observation	
5.3 Volumetric analysis	5.3.1	Recall the colour of the aqueous complexes of: Ca^{2+}/Mg^{2+} using edta: eriochrome black T turns fromred to blue I_2 with $S_2O_3^{2-}$ using starch: add the thiosulphatesolution until the solution is straw coloured and thenadd starch; turns from blue-black to colourless Fe^{2+} with $MnO4^-$: no indicator required the solutionchanges from colourless to pink	
5.8 Oxidation	5.8.1	Recall the colour of the aqueous complexes of:	
states	5.8.2	$\begin{array}{llllllllllllllllllllllllllllllllllll$	
	5.6.2	precipitates of the hydroxides with NaOH(aq) and $NH_3(aq)$ and, where appropriate, their subsequent dissolution:	
		Cr ³⁺ green-blue precipitate soluble in excess sodium hydroxide solution	
		Mn ²⁺ white precipitate slowly turning brown/black on standing; insoluble in excess sodium hydroxide/ammonia solution	
		Fe ²⁺ green precipitate; insoluble in excess sodium hydroxide/ ammonia solution	
		Fe ³⁺ rust/brown precipitate; insoluble in excess sodium hydroxide/ammonia solution	

	Co ²⁺	blue precipitate; insoluble in excess sodium hydroxide solution; soluble in excess ammonia solution forming a yellow solution
	Ni ²⁺	green precipitate insoluble in excess sodium hydroxide solution; soluble in excess ammonia solution to form a blue solution
	Cu ²⁺	blue precipitate; insoluble in excess sodium hydroxide solution; soluble in excess ammonia solution to form a dark/deep blue solution
5.8.3	V^{2+}	violet
	V^{3+}	green
	$V(IV) VO^{2+})$	blue
	$V(V)(VO_2^+)$	yellow
5.8.5	Chrome alum	green solution; violet crystals