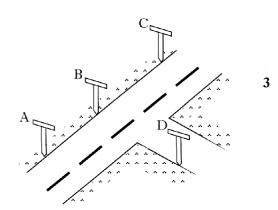

## ALL questions should be attempted.

Marks

3


- 1. Find the equation of the straight line which is parallel to the line with equation 2x + 3y = 5 and which passes through the point (2, -1).
- 2. For what value of k does the equation  $x^2 5x + (k + 6) = 0$  have equal roots?
- 3. (a) Roadmakers look along the tops of a set of T-rods to ensure that straight sections of road are being created. Relative to suitable axes the top left corners of the T-rods are the points A(-8, -10, -2), B(-2, -1, 1) and C(6, 11, 5).

  Determine whether or not the section of road ABC has been built in a straight line.



(b) A further T-rod is placed such that D has coordinates (1, -4, 4). Show that DB is perpendicular to

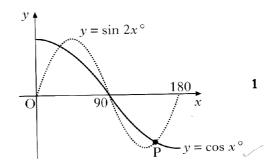
AB.



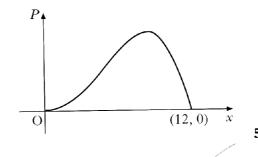
**4.** Given  $f(x) = x^2 + 2x - 8$ , express f(x) in the form  $(x + a)^2 - b$ .

2

[Turn over


Marks

5. (a) Solve the equation  $\sin 2x^{\circ} - \cos x^{\circ} = 0$  in the interval  $0 \le x \le 180$ .


4

(b) The diagram shows parts of two trigonometric graphs,  $y = \sin 2x^{\circ}$  and  $y = \cos x^{\circ}$ .

Use your solutions in (a) to write down the coordinates of the point P.



6. A company spends x thousand pounds a year on advertising and this results in a profit of P thousand pounds. A mathematical model, illustrated in the diagram, suggests that P and x are related by  $P = 12x^3 - x^4$  for  $0 \le x \le 12$ . Find the value of x which gives the maximum profit.



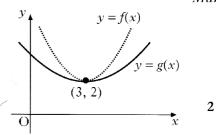
- 7. Functions  $f(x) = \sin x$ ,  $g(x) = \cos x$  and  $h(x) = x + \frac{\pi}{4}$  are defined on a suitable set of real numbers.
  - (a) Find expressions for:
    - (i) f(h(x));
    - (ii) g(h(x)).

2

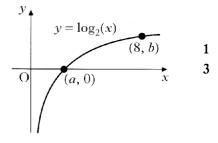
- (b) (i) Show that  $f(h(x)) = \frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x$ .
  - (ii) Find a similar expression for g(h(x)) and hence solve the equation f(h(x)) g(h(x)) = 1 for  $0 \le x \le 2\pi$ .

5

8. Find x if  $4 \log_x 6 - 2 \log_x 4 = 1$ .


[X056/301]

3


Marks

**9.** The diagram shows the graphs of two quadratic functions y = f(x) and y = g(x). Both graphs have a minimum turning point at (3, 2).

Sketch the graph of y = f'(x) and on the same diagram sketch the graph of y = g'(x).



- 10. The diagram shows a sketch of part of the graph of  $y = \log_2(x)$ .
  - (a) State the values of a and b.
  - (b) Sketch the graph of  $y = \log_2(x+1) 3$ .



- 11. Circle P has equation  $x^2 + y^2 8x 10y + 9 = 0$ . Circle Q has centre (-2, -1) and radius  $2\sqrt{2}$ .
  - (a) (i) Show that the radius of circle P is  $4\sqrt{2}$ .
    - (ii) Hence show that circles P and Q touch.
  - (b) Find the equation of the tangent to circle Q at the point (-4, 1).
  - (c) The tangent in (b) intersects circle P in two points. Find the x-coordinates of the points of intersection, expressing your answers in the form  $a \pm b\sqrt{3}$ .

3

4

3

[END OF QUESTION PAPER]