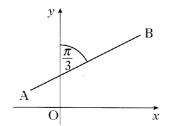

ALL questions should be attempted.

Marks

4

1. Show that x = 2 is a root of the equation $y = 2x^3 + x^2 - 13x + 6 = 0$ and hence, or otherwise, find the other roots.


2. A and B are the points (-3, -1) and (5, 5). Find the equation of the perpendicular bisector of AB.

3. The point P(-1, 7) lies on the curve with equation $y = 5x^2 + 2$. Find the equation of the tangent to the curve at P.

3

4. The line AB makes an angle of $\frac{\pi}{3}$ radians with the y-axis, as shown in the diagram. Find the exact value of the gradient of AB.

y

P∙

Å (−1, −1)

2

5. (a) The diagram shows a circle, centre P, with equation $x^2 + y^2 + 6x + 4y + 8 = 0$. Find the equation of the tangent at the point A (-1, -1) on the circle.

4

(b) The tangent crosses the y-axis at B. Find the equation of the circle with AB as diameter.

3

Marks


- $6. \quad f(x) = \sqrt{3}\sin x^{\circ} \cos x^{\circ}$
 - (a) Express f(x) in the form $k\sin(x-a)^\circ$ where k > 0 and $0 \le a < 360$.

4

(b) Hence solve the equation $f(x) = \sqrt{2}$ in the interval $0 \le a < 360$.

3

7. Using triangle PQR, as shown, find the exact value of $\cos 2x$.

3

8. Functions f and g are defined on the set of real numbers by

$$f(x) = x - 1$$
$$g(x) = x^2.$$

- (a) Find formulae for
 - (i) f(g(x))
 - (ii) g(f(x)).

3

(b) The function h is defined by h(x) = f(g(x)) + g(f(x)). Show that $h(x) = 2x^2 - 2x$ and sketch the graph of h.

3

(c) Find the area enclosed between this graph and the x-axis.

4

9. Find $\int \frac{x^2-5}{x\sqrt{x}} dx$.

Marks

10. The diagram shows two vectors \boldsymbol{a} and \boldsymbol{b} , with $|\boldsymbol{a}|=3$ and $|\boldsymbol{b}|=2\sqrt{2}$.

These vectors are inclined at an angle of 45° to each other.

- (a) Evaluate (i) a.a
 - .(ii) **b.b**
 - (iii) a.b

2

(b) Another vector \mathbf{p} is defined by $\mathbf{p} = 2\mathbf{a} + 3\mathbf{b}$.

Evaluate $\boldsymbol{p}.\boldsymbol{p}$ and hence write down $|\boldsymbol{p}|$.

4

[END OF QUESTION PAPER]