This is the equation we are trying to solve,

$$
\frac{d y}{d x}-\frac{1}{x} y=x e^{x}
$$

I have simply divided by x because we have to get the equation in the form below
Solving differential equations in the form

$$
\frac{d y}{d x}+P(x) y=G(x)
$$

Where $\mathrm{P}(\mathrm{x})$ and $\mathrm{G}(\mathrm{x})$ are functions of x and in this case, $P(x)=\frac{1}{x}$ and $G(x)=x e^{x}$

The integrating factor is found by

$$
e^{\int P(x) d x}
$$

So therefore, in this question, the integrating factor is

$$
\begin{gathered}
e^{\int-\frac{1}{x} d x} \\
\int-\frac{1}{x} d x=-\ln x=\ln x^{-1}=\ln \frac{1}{x}
\end{gathered}
$$

So there fore, the integrating factor is

$$
e^{\ln \frac{1}{x}}
$$

Which simply equals x
So the Integrating Factor (I.F) $=\frac{1}{x}$
The equation isn't solved yet though, this is just a step we have to take to make it solveable.
What we now do is multiply the whole equation;

$$
\frac{d y}{d x}-\frac{1}{x} y=x e^{x}
$$

By the integrating factor.
So multiplying by $\frac{1}{x}$ gives us

$$
\frac{1}{x} \frac{d y}{d x}-\frac{1}{x^{2}} y=e^{x}
$$

You have to now realise that

$$
\frac{1}{x} \frac{d y}{d x}-\frac{1}{x^{2}} y=\frac{d}{d x}\left[\frac{1}{x} y\right]
$$

Where $\frac{d}{d x}\left[\frac{1}{x} y\right]$ means the differential of $\frac{1}{x} y$

So now you have

$$
\frac{d}{d x}\left[\frac{1}{x} y\right]=e^{x}
$$

Now you can integrate both sides of the equation,

$$
\int \frac{d}{d x}\left[\frac{1}{x} y\right]=\int e^{x} d x
$$

Which therefore gives

$$
\frac{1}{x} y=e^{x}+c
$$

To find $c$, you substitute your values of $y=2$ and $x=1$

So,

$$
\frac{1}{1} \cdot 2=e^{1}+c
$$

So,

$$
\begin{gathered}
c=2-e \\
\frac{1}{x} y=e^{x}+2-e
\end{gathered}
$$

And to get y , just multiply by x

$$
y=x e^{x}+2 x-x e
$$

Im hoping thats right..

Heres a summary for solving differential equations in the form

$$
\frac{d y}{d x}+P(x) y=G(x)
$$

-rearrange to get it into that form (like i did with dividing by $x$ )
-find the integrating factor

$$
e^{\int P(x) d x}
$$

-multiply the equation be the integrating factor
-put the left hand side of the equation in the form $\frac{d}{d x}[(I . F) y]$ where I.F is the integrating factor. -integrate both sides.
-find constant

This is a tough thing to learn at the start, so don't worry if its hard to understand, if there are any questions, just ask.

