0

Unit 4 Topic 2 Electric and magnetic fields

1 Free-body force diagram:

Tension/pull of thread (1)
$F /$ push of charged sphere/electric force/electrostatic force (1)
Weight/W/pull of Earth [Not $m g$, unless $W=m g$ stated] (1)

Force equation:

$W=T \cos \theta \quad$ and $\quad F=T \sin \theta(1)$
Processing mark, e.g. $F=\frac{W}{\cos \theta} \sin \theta \quad$ OR $\quad \tan \theta=\frac{\sin \theta}{\cos \theta}(1)$
OR
F, T, W labelled (1)
both angles labelled (1)

Table:

Using any pair of values (1)
Seeing correct constant for their pair of values (1)
Distance $r=36 \times 10^{-3} \mathrm{~m}$
$F=35.5 / 36$ [no u.e.] (1)
Distance $r=27 \times 10^{-3} \mathrm{~m}$
$F=63.1$ [no u.e.] (1)
OR
Valid simple ratio calculation using a pair of values (1)
stating product $Q_{1} Q$ or $k Q Q_{2}$ constant (1)
$F=63.1$ [no u.e.] (1)
Measurements taken quickly because:
Leakage/discharge of charge [Allow dissipation or description of process] (1)

2 Alpha particle: diagram

Curving path between plates (1)
Towards 0 V plate (1)
Emerging from plates and carrying on straight (1)

Calculation:

Electric field $=2000 \mathrm{~V} / 10 \times\left(10^{-3}\right) \mathrm{m}$ [correct substitutions] (1)
Force $=E Q$

$$
\begin{aligned}
& =\left(\frac{2000}{10 \times 10^{-3}}\right) \mathrm{V} \mathrm{~m}^{-1} \times(2) \times 1.6 \times 10^{-19}[\text { correct substitution e.c.f. their } E](1) \\
& =6.4 \times 10^{-14} \mathrm{~N}(1)
\end{aligned}
$$

Unit 4 Topic 2 Electric and magnetic fields (cont.)

3 Electric pattern (diagram):

Straight, parallel, reasonably perpendicular to plates and equispaced
[minimum 3 lines] (1)
Correct direction labelled on one line [downwards arrow] (1)

Equipotential lines:

Any two correct equipotentials with any labelling to identify potentials (rather than field lines) (1) [Arrows on electric field lines - none on equipotential being sufficient labelling]

Force:

$E=\frac{3000 \mathrm{~V}}{25 \times\left(10^{-3}\right) \mathrm{m}}$ [correct substitution] (1)
Use of $F=E e$ even if value of E is incorrect (1)
$F=120 \times\left(10^{3}\right) \mathrm{V} \mathrm{m}^{-1} \times 1.6 \times 10^{-19} \mathrm{C}=1.9(2) \times 10^{-14}(\mathrm{~N})(1)$

Graph:

Straight horizontal line [even if extending beyond 25 mm] (1)
Value of F marked [e.c.f. their value] provided graph begins on force axis and is marked at this point (1)

Speed:

Use (1)

$\mathrm{eV}=\frac{1}{2} m v^{2}$	$v^{2}=2\left(\frac{F}{m}\right) \mathrm{s}$	$F d=\frac{1}{2} m v^{2}$
$v^{2}=2 \mathrm{eV} / \mathrm{m}$		$v^{2}=2 \mathrm{Fd} / m$

Substitution (1)

$$
\begin{aligned}
v^{2} & =\frac{2 \times 1.6 \times 10^{-19} \mathrm{C} \times 3000 \mathrm{~V}}{9.11 \times 10^{-31} \mathrm{~kg}} \\
& =2\left(\frac{1.92 \times 10^{-14} \mathrm{~N}}{9.11 \times 10^{-31} \mathrm{~kg}}\right) \times 25 \times 10^{-3} \mathrm{~m} \\
& =\frac{2 \times 1.92 \times 10^{-14} \mathrm{~N} \times 25 \times 10^{-3} \mathrm{~m}}{9.11 \times 10^{-31} \mathrm{~kg}}
\end{aligned}
$$

Answer: $v=3.2 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}(1)$
[If $F=2 \times 10^{-14} \mathrm{~N}$, then $v=3.3 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$]

4 Define capacitance:
Capacitance $=$ charge/potential difference (2)
Circuit diagram: (1)

Unit 4 Topic 2 Electric and magnetic fields (cont.)

Maximum current:

Current $=1.5 \mathrm{~V} / 470 \mathrm{k} \Omega(1)$
Current $=3.2 \mu \mathrm{~A}(1)$
Sketch graph: (4)

Energy stored:

$\frac{1}{2} C V^{2}=\frac{1}{2} \times(200 \mu \mathrm{~F}) \times(1.5 \mathrm{~V})^{2}(1)$
Energy $=2.25 \times 10^{-4} \mathrm{~J}(1)$

5 Slope of graph:

Capacitance (2)
Shaded area of graph:
Energy/work done (2)

Energy stored is 3.1 J :

Energy stored $=\frac{1}{2} C V^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 100 \times 10^{-6} \times 250^{2} \text { [formula }+ \text { correct substitution] (1) } \\
& (=3.125)=3.1 \mathrm{~J} \text { [must have previous mark] (1) }
\end{aligned}
$$

Power from cell and minimum time for cell to recharge capacitor:

$$
\begin{aligned}
\text { Cell power } & =1.5 \mathrm{~V} \times 0.20 \mathrm{~A}(1) \\
& =0.30 \mathrm{~W} \text { [allow } 3 / 10 \mathrm{~W} \text { here] (1) } \\
\text { Time } & =3.1 \mathrm{~J} / 0.30 \mathrm{~W}(\text { e.c.f. }) \\
& =10 \mathrm{~s}(\mathbf{1})
\end{aligned}
$$

6 Demonstration:

A diagram with a wire perpendicular to a magnetic field with the means
to measure the force on the wire. (1)

And max 3 marks from:

Method of providing and measuring d.c. (1)
Method of varying and measuring force with details. (1)
For various values of current, measure F. (1)
Plot F against I - straight line through origin. (1)
Direction of the current in the wire: To the east (1)
Calculate the current: $F=B I l$
$\left(1.5 \times 10^{-3} \mathrm{~kg}\right) \times\left(9.81 \mathrm{~N} \mathrm{~kg}^{-1}\right)=\left(1.8 \times 10^{-5} \mathrm{~T}\right) \times I \times(2.0 \mathrm{~m})(1)$
Current $=410 \mathrm{~A}(1)$
Other effect: Wire melts (1)

Unit 4 Topic 2 Electric and magnetic fields (cont.)

7 Explanation:

The wire, when carrying a current, feels a force when in a magnetic field (1)
The current is at 90° to the magnetic field (1)
hence PQ feels an upward force; RS a downward force; they produce a couple which causes rotation (1)

Addition to diagram of an upward arrow (1)

Three factors:

(1) Strength/magnitude of magnetic field (1)
(2) Size of current (1)
(3) Number of turns of coil/length of PQ (1)

Explanation of observation:

Flux cut results in emf induced (1) emf opposite to applied pd results in $V_{\text {total }}$ less, hence I less (1)

