## Examzone 2 Materials

1 Sensible scale (1)
Plotted correctly (1)
Best fit line (1)
Indication on the graph of letter $P$ the limit of proportionality (1)

$$
\begin{aligned}
\sigma & =\frac{T}{A} \\
& =\frac{28.5 \times 10^{3} \mathrm{~N}}{1.3 \times 10^{-4} \mathrm{~m}^{2}}( \pm 1)(1) \\
& =2.2 \times 10^{8} \mathrm{Nm}^{-2}(1) \\
\varepsilon=\frac{x}{l} & =\frac{6.9 \times 10^{-6} \mathrm{~m}}{6.5 \times 10^{-2} \mathrm{~m}}( \pm 1)(1) \\
E=\frac{\sigma}{\varepsilon} & =\frac{2.2 \times 10^{8} \mathrm{Nm}^{-2}}{1.1 \times 10^{-3}} \\
& =2.0 \times 10^{11} \mathrm{Nm}^{-2}(1)
\end{aligned}
$$

Steeper, shorter (1)
No 'bend' [or very little] (1)
2

|  | Desirable | Not <br> desirable | Reason |
| :--- | :---: | :--- | :--- |
| Elastic | $\mathbf{( 1 )}$ |  | Rod returns to original shape/position on unloading (1) |
| Brittle |  | $(\mathbf{1 )}$ | Rod should not snap/shatter (when lifting a heavy fish) (1) |
| Hard | $\mathbf{( 1 )}$ |  | Rod will not scratch/dent with a large force (1) |
| Tough | $\mathbf{( 1 )}$ |  | Rod can withstand a sudden impact or dynamic load (1) |

[Two marks for each line]

## 3 Complete table:

Plastic: Not desirable (1)
Reason: Would remain deformed (once load is removed) (1)
Tough: Desirable (1)
Reason: To withstand dynamic loads/impacts/shocks (1)
Brittle: Not desirable (1)
Reason: Would crack / shatter / snap / break with no (plastic) deformation (1)

## Examzone 2 Materials (cont.)

## Calculate stress:

Use of $m \times g(1)$
[ $g=10 \mathrm{~m} \mathrm{~s}^{-2}$ will not be penalised]
Correct answer [1.9 $\times 10^{4} \mathrm{~Pa}$ ] (1)

$$
\begin{array}{ll}
\text { e.g. } & \text { Force } \\
\sigma=\frac{F}{A} & =78 \times 9.81=785 \mathrm{~N} \\
& =18686=1.9 \times 10^{4} \mathrm{~Pa}
\end{array}
$$

[allow $1.8-2.0 \times 10^{4} \mathrm{~Pa}$ and allow $\mathrm{Nm}^{-2}$ as units]

## Running athlete:

On one foot / part of foot (1)
As less (surface) area (1)
OR
When landing/pushing off (1)
As the force is greater (1)
(Total 10 marks)

## 4 Weight

$m g=70 \times 9.81=690 \mathrm{~N}(1)$

## Meaning of upthrust

There is an upward force (1)
in a fluid / equal to weight of air displaced (1)

## Upthrust in newtons

Upthrust $=$ mass of air displaced $\times g$
$=$ volume of air displaced $\times$ density of air $\times g(1)$
$=V \times 1.29 \times 9.81=12.65 \mathrm{~V}$ (1)

## Weight of helium

Volume $\times$ density $\times g=0.18 \mathrm{Vg}(=1.77 \mathrm{~V})(1)$

## Total volume of balloons

Upthrust $=$ weight of man + weight of helium (1)
$12.65 \mathrm{~V}=690+0.18 \mathrm{Vg}(1)$
$10.88 \mathrm{~V}=690$
$V=63 \mathrm{~m}^{3}$ [Allow e.c.f.] (1)
Why viscous force can be ignored
Any two from:

- Quote of $6 \pi \eta r u$
- $\quad v$ is small
- $\eta$ is small (2)
(Total 11 marks)

