Mark Scheme (Final)

Summer 2009

GCE

GCE Statistics S2 (6684/01)

General Marking Guidance

:

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

June2009

6684 Statistics S2

Mark Scheme

Question Number	Scheme	Marks
Q1 (a) (b)	$\begin{array}{\|rc} {[X \sim \mathrm{~B}(30,0.15)]} & \\ \mathrm{P}(X \leq 6),=0.8474 & \text { awrt } 0.847 \\ Y \sim \mathrm{~B}(60,0.15) \approx \operatorname{Po}(9) & \text { for using } \operatorname{Po}(9) \\ \mathrm{P}(Y \leq 12),=0.8758 & \text { awrt } 0.876 \end{array}$ [N.B. normal approximation gives 0.897 , exact binomial gives 0.894]	M1, A1 (2) B1 M1, A1 (3) (5)
(a) (b)	M1 for a correct probability statement $\mathrm{P}(X \leq 6)$ or $\mathrm{P}(X<7)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\mathrm{P}(X=2)+\mathrm{P}(X=4)+\mathrm{P}(X=5)+\mathrm{P}(X=6)$. (may be implied by long calculation) Correct answer gets M1 A1. allow 84.74% B1 may be implied by using $\operatorname{Po}(9)$. Common incorrect answer which implies this is 0.9261 M1 for a correct probability statement $\mathrm{P}(X \leq 12)$ or $\mathrm{P}(X<13)$ or $\mathrm{P}(X=0)+\mathrm{P}(X=$ $1)+\ldots+\mathrm{P}(X=12)$ (may be implied by long calculation) and attempt to evaluate this probability using their Poisson distribution. Condone $\mathrm{P}(X \leq 13)=0.8758$ for B 1 M 1 A 1 Correct answer gets B1 M1 A1 Use of normal or exact binomial get B0 M0 A0	

Question	Scheme	Marks
Q2	$\begin{aligned} & \mathrm{H}_{0}: \lambda=2.5(\text { or } \lambda=5) \quad \mathrm{H} 1: \lambda<2.5(\text { or } \lambda<5) \\ & X \sim \operatorname{Po}(5) \\ & \mathrm{P}(X \leq 1)=0.0404 \\ & \text { or } \quad \mathrm{CR} X \leq 1 \end{aligned}$ [$0.0404<0.05$] this is significant or reject H_{0} or it is in the critical region There is evidence of a decrease in the (mean) number/rate of deformed blood cells	B1B1 M1 A1 M1 A1 (6) (6)
	$1^{\text {st }} \mathrm{B} 1$ for H_{0} must use lambda or mu; 5 or 2.5. $2^{\text {nd }} \mathrm{B} 1$ for H_{1} must use lambda or mu; 5 or 2.5 $1^{\text {st }} \mathrm{M} 1$ for use of $\mathrm{Po}(5)$ may be implied by probability (must be used not just seen) eg. $\mathrm{P}(X=1)=0.0404-\ldots$ would score M1 A0 $1^{\text {st }} \mathrm{A} 1$ for 0.0404 seen or correct CR $2^{\text {nd }} \mathrm{M} 1$ for a correct statement (this may be contextual) comparing their probability and 0.05 (or comparing 1 with their critical region). Do not allow conflicting statements. $2^{\text {nd }} \mathrm{A} 1$ is not a follow through. Need the word decrease, number or rate and deformed blood cells for contextual mark. If they have used \neq in H_{1} they could get B1 B0 M1 A1 M1A0 mark as above except they gain the $1^{\text {st }} \mathrm{A} 1$ for $\mathrm{P}(X \leq 1)=0.0404$ or CR $X \leq 0$ $2^{\text {nd }}$ M1 for a correct statement (this may be contextual) comparing their probability and 0.025 (or comparing 1 with their critical region) They may compare with 0.95 (one tail method) or 0.975 (one tail method) Probability is 0.9596 .	

Question Number	Scheme	Marks
Q3 (a) (b) (c)	A statistic is a function of $X_{1}, X_{2}, \ldots X_{n}$ that does not contain any unknown parameters The probability distribution of Y or the distribution of all possible values of Y (o.e.) Identify (ii) as not a statistic Since it contains unknown parameters μ and σ.	B1 B1 (2) B1 (1) B1 dB1 (2) (5)
(a)	NB If you want to give one mark for their answer give the first B1g never award B0 B1 Some suggested other wording is as follows but you need to use your judgment. It may be neither statement is quite there but you feel it is worth a generous B1 B1 e.g. is a function of the sample or the data / is a quantity calculated from the sample or the data / is a random variable calculated from the sample or the data B1 e.g. does not contain any unknown parameters/quantities contains only known parameters/quantities only contains values of the sample Y is a function of $X_{1}, X_{2}, \ldots X_{n}$ that does not contain any unknown parameters B1B1 is a function of the values of a sample with no unknowns B1B1 is a function of the sample values is a function of all the data values A random variable calculated from the sample A random variable consisting of any function A function of a value of the sample A function of the sample which contains no other values/ parameters Examples of other acceptable wording All possible values of the statistic together with their associated probabilities $1^{\text {st }} \mathrm{B} 1$ for selecting only (ii) $2^{\text {nd }} \mathrm{B} 1$ for a reason. This is dependent upon the first B1. Need to mention at least one of mu (mean) or sigma (standard deviation or variance) or unknown parameters. Examples since it contains mu B1 since it contains sigma B1 since it contains unknown parameters/quantities B1 since it contains unknowns B0	

Question Number	Scheme	Marks
Q4 $\begin{array}{ll}\text { (a) } \\ & \\ & (b) \\ & \text { (c) }\end{array}$		M1 A1 A1 A1A1 (5) B1 (1) B1ft B1ft (2)
(a) (b) (c)	M1 for $B(20,0.3)$ seen or used $1^{\text {st }} \mathrm{A} 1$ for 0.0355 $2^{\text {nd }} \mathrm{A} 1$ for 0.048 $3^{\text {rd }} \mathrm{A} 1$ for $(X) \leq 2$ or $(X)<3$ or [0,2] They get A0 if they write $\mathrm{P}(X \leq 2 / X<3)$ $4^{\text {th }} \mathrm{A} 1(X) \geq 10$ or $(X)>9$ or [10,20] They get A0 if they write $\mathrm{P}(X \geq 10 / X>9)$ $\mathbf{1 0} \leq X \leq 2$ etc is accepted To describe the critical regions they can use any letter or no letter at all. It does not have to be X. B1 correct answer only $1^{\text {st }} \mathrm{B} 1$ for a correct statement about 11 and their critical region. $2^{\text {nd }} \mathrm{B} 1$ for a correct comment in context consistent with their CR and the value 11 Alternative solution $1^{\text {st }} \mathrm{B} 0 P(X \geq 11)=1-0.9829=0.0171$ since no comment about the critical region $2^{\text {nd }} \mathrm{B} 1$ a correct contextual statement.	

Question Number	Scheme ${ }^{\text {a }}$ Marks
Q5 (a)	
(a) SC (b)	B1 for seeing or using $\operatorname{Po}(6)$ M1 for $1-\mathrm{P}(X \leq 3)$ or $1-[\mathrm{P}(X=0)+\mathrm{P}(X=1)+\mathrm{P}(X=2)+\mathrm{P}(X=3)]$ A1 awrt 0.849 If $\mathrm{B}(2000,0.003)$ is used and leads to awrt 0.849 allow B0 M1 A1 If no distribution indicated awrt 0.8488 scores B1M1A1 but any other awrt 0.849 scores B0M1A1 $1^{\text {st }}$ M1 for identifying the normal approximation $1^{\text {st }} \mathrm{A} 1$ for [mean $\left.=24\right]$ and $[\mathrm{sd}=\sqrt{24}$ or var $=24]$ These first two marks may be given if the following are seen in the standardisation formula : 24 $\sqrt{24} \text { or awrt } 4.90$ $2^{\text {nd }} \mathrm{M} 1$ for attempting a continuity correction ($20 / 28 \pm 0.5$ is acceptable) $3^{\text {rd }} \mathrm{M} 1$ for standardising using their mean and their standard deviation. $2^{\text {nd }} \mathrm{A} 1$ correct z value awrt ± 0.71 or this may be awarded if see $\frac{20.5-24}{\sqrt{24}}$ or $\frac{27.5-24}{\sqrt{24}}$ $4^{\text {th }}$ M1 for $1-$ a probability from tables (must have an answer of <0.5) $3^{\text {rd }} \mathrm{A} 1$ answer awrt 3 sig fig in range $0.237-0.239$

\begin{tabular}{|c|c|}
\hline Question Number \& Scheme \({ }^{\text {a }}\) Marks \\
\hline \begin{tabular}{l}
(b) \\
(c) \\
(d) \\
(e)
\end{tabular} \& \\
\hline (a)
(b)
(c)

(d)

(d) \& | B1 cao |
| :--- |
| B 1 for value of a. B1 for value of b |
| $1^{\text {st }}$ M1 for attempt at $\int a x^{3}$ using their a. For attempt they need x^{4}. Ignore limits. |
| $2^{\text {nd }}$ M1 for attempt at $\int b x^{2}-a x^{3}$ use their a and b. For attempt need to have either x^{3} or x^{4}. Ignore limits |
| $1^{\text {st }} \mathrm{A} 1$ correct integration for both parts |
| $3^{\text {rd }}$ M1 for use of the correct limits on each part |
| $2^{\text {nd }} \mathrm{A} 1$ for either getting 1 and $3 \frac{2}{3}$ or awrt 3.67 somewhere or $4 \frac{2}{3}$ or awrt 4.67 |
| $4^{\text {th }} \mathrm{M} 1$ for use of $\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$ must add both parts for $\mathrm{E}\left(X^{2}\right)$ and only have subtracted the mean 2 once. You must see this working |
| $3^{\text {rd }} \mathrm{A} 1 \sigma=\sqrt{\frac{2}{3}}$ or $\sqrt{0.66667}$ or better with no incorrect working seen. |
| M1 for attempting to find LQ , integral of either part of $\mathrm{f}(x)$ with their ' a ' and ' b ' $=0.25$ |
| Or their $\mathrm{F}(x)=0.25$ i.e. $\frac{a x^{2}}{2}=0.25$ or $b x-\frac{a x^{2}}{2}+4 a-2 b=0.25$ with their a and b |
| If they add both parts of their $\mathrm{F}(x)$, then they will get M0. |
| $1^{\text {st }} \mathrm{A} 1$ for a correct equation/expression using their ' a ' |
| $2^{\text {nd }} \mathrm{A} 1$ for $\sqrt{2}$ or awrt 1.41 |
| M1 for a reason based on their quartiles |
| - Possible reasons are $\mathrm{P}(2-\sigma<X<2+\sigma)=0.6498$ allow awrt 0.65 |
| - $1.184<\mathrm{LQ}(1.414)$ |
| A1 for correct answer >0.5 |
| NB you must check the reason and award the method mark. A correct answer without a correct reason gets M0 A0 |

\hline
\end{tabular}

