
Chapter 5

Random Variables and
Probability Distributions

When we consider outcomes of an experiment, we often want to consider numerical summaries
of the experiment. Random variables are useful for this.

Example 5.1. Suppose we toss a coin 3 times and are interested in the number of heads
thrown. The sample space, which lists all of the possible outcomes of the experiment, looks
like this:

S = {HHH, HHT, HT H, HT T, T HH, T HT, T T H, T T T },

but the possible values of the variable we are interested in are X = {0, 1, 2, 3}.

The above is an example of a random variable. A formal definition is as follows:

Definition 5.1. A random variable is a function X : S æ R that associates a numerical
value, X(s), with every outcome s œ S.

Example 5.2. Suppose we count the number of trains to arrive at Exeter St David’s station
from 9am-10am tomorrow. Then

S = {0, 1, 2, . . .}.

The number of trains to arrive during that period is a random variable X(s) = s for every
s œ S.

Example 5.3. Suppose, in example 5.2 we are interested in the time (in seconds after 9am),
X, that the first train arrives. Here

S = {t : t œ [0, Œ)}

and X(t) = t, but now X(t) could be any value on the positive real line (it is continuous).

Definition 5.2. The range space, R, of a random variable is the set of all possible values
a random variable can take.
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Definition 5.3. A discrete random variable, has the property that its range space is a
countable set. A random variable is continuous if its range space is an uncountable set.

In example 5.2 the number of trains was countable. In fact it was countably infinite as there
was a one to one mapping of X(s) with the natural numbers N. The number of heads in 3
tosses is an example of a finite countable set.

In example 5.3, the time taken for the first train to arrive could have been any non-negative
real number and so was uncountable.

There are slight di�erences in how we must treat discrete and continuous random variables,
but the ideas and reasoning are the same and so we develop our account in parallel as far as
possible, to fix ideas. We start with the notion of the probability distribution.

5.1 Probability distributions
We know that, e�ectively, X is a random function of the outcomes of an experiment. I.e.,
we don’t know what value X will take when we perform the experiment. A probability
distribution represents all of the probability statements that we can make about a random
variable, simultaneously.

Definition 5.4. The cumulative distribution function (cdf) of a random variable X is

F (x) = P (X Æ x).

• Note that this definition applies to either a discrete or continuous random variable.
• Note we will always use a captial letter (e.g. X) to denote the random variable itself

and the corresponding lower case letter (e.g. x) to denote the particular value X took
after the stochastic experiment.

The cdf has the following properties:

1. F (≠Œ) = P (X Æ ≠Œ) = 0,
2. F (Œ) = P (X Æ Œ) = 1,
3. If x1 Æ x2, then F (x1) Æ F (x2) (F is non-decreasing).

Example 5.4. Let X have CDF F (x). Express P (a < X Æ b) and the CDF of X2 in terms
of F .

Solution. First, we have

P (a < X Æ b) = P (X Æ b) ≠ P (X Æ a)
= F (b) ≠ F (a).

For the second piece, suppose we write FX2 (x) to be the CDF of X2, then

FX2 (x) = P (X2 Æ x) = P (≠
Ô

x Æ X Æ
Ô

x)
= P (X Æ

Ô
x) ≠ P (X Æ ≠

Ô
x)

= F (
Ô

x) ≠ F (≠
Ô

x).
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Note: that knowing the cdf of a random variable for all possible values of x gives any proba-
bility of the form P (a Æ X Æ b) for real a and b via

P (a Æ X Æ b) = P (X Æ b) ≠ P (X Æ a) = F (b) ≠ F (a).

Definition 5.5. For a discrete random variable, X, the probability mass function (pmf)
is p(x) = P (X = x) for all x œ R.

Example 5.5. Suppose we roll two dice and let the random variable X be the total score
of the two rolls. We can tabulate the probability distribution for this random variable by
giving P (X = x) for all x œ R.
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36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

x 2 3 4 5 6 7 8 9 10 11 12

Note, that we can find P (X = x) for a discrete random variable X from the cdf via

P (X = x) = F (x) ≠ F (x ≠ 1)

.

For continuous random variables, the quantity P (X = x) is unhelpful as

P (X = x) = lim
hæ0

P (x ≠ h < X < x + h)

= lim
hæ0

(F (x + h) ≠ F (x ≠ h))

= 0.

So, for any x œ R, if X is a continuous random variable P (X = x) = 0, though some value of
x must occur. This essentially says that 0 probability events are not impossible!

The pmf is very useful for discrete random variables as it enables us to write down a probability
distribution for the variable as the set {(x, p(x)), x œ R}. Though the cdf gives this information
too, and is also su�cient for a continuous variable, there is a continuous analogue to the pmf
that we can derive from the cdf of a continuous random variable called the probability density
function (pdf).

Definition 5.6. The probability density function (pdf) of a random variable X, is f(x)
where

f(x) = F Õ(x),
or, written another way,

F (x) =
⁄ x

≠Œ
f(x)dx.

The pdf, f(x) is NOT the probability that X = x (that is 0). To see what it is, note that for
h > 0,

F Õ(x) = lim
hæ0

F (x + h) ≠ F (x)
h

,

so that, for small h,

P (x < X < x + h) = F (x + h) ≠ F (x) = hf(x),
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i.e. the probability of being within a small interval of x is approximately the density times
the width of the interval. We can get there from the integral expression via

P (x < X < x + h) = F (x + h) ≠ F (x) =
⁄ x+h

≠Œ
f(t)dt ≠

⁄ x

≠Œ
f(t)dt

=
⁄ x+h

x

f(t)dt

¥ hf(x).

a_pdf <- function(x){(1/sqrt(2*pi))*((4/7)*(1/1)*exp(-(1/(2*1^2))*(x-0)^2)
+ (3/7)*(1/0.5)*exp(-(1/(2*0.5^2))*(x-3)^2))}

xs <- seq(from=-4,to=6,len=1000)
pdf_data <- data.frame(x=xs, f = a_pdf(xs))
myplot <- ggplot(data=pdf_data) +

geom_line(mapping = aes(x=x,y=f),colour="blue") +
scale_x_continuous(breaks=c(-4,-2,0,2,2.5,2.9,4,6),

labels = c("-4","-2","0","2","x","x+h","4","6"),
expand=c(0,0)) +

scale_y_continuous(expand=c(0,0)) +
theme(axis.text.x = element_text(color = c(rep("black", 4), "blue", "blue", "black", "black")),

axis.ticks.x = element_line(color=c(rep("black" ,4), "blue", "blue", "black", "black"))) +
theme(axis.text.y = element_text(color="black"),

axis.ticks.y = element_line(color="black")) +
theme(panel.grid.minor = element_blank(),

panel.grid.major.x = element_line(color=c(rep("white", 4), NA, NA, "white", "white"))) +
labs(y="f(x)")

shade <- rbind(c(2.5,0), subset(pdf_data, (x>2.5)&(x<2.9)), c(2.9,0))
myplot2 <- myplot + geom_segment(aes(x=2.5,y=0,xend=2.5,yend=a_pdf(2.5))) +

geom_polygon(data=shade,aes(x,f),fill="darkgreen",colour="darkgreen")
myplot2
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The probability distribution for a continuous random variable is completely characterised by
its pdf or cdf.

5.1.1 Properties
Though the pdf f(x) is not a probability for any value of x, unlike the discrete analogue the
pmf p(x), the two nevertheless have corresponding properties. For discrete X we have

1. 0 Æ p(x) Æ 1 (as each p(x) is a probability it must obey the axioms)
2.

q
xœR

p(x) = 1, as, this is the probability that an outcome in S occurs.

For continuous X,

1. f(x) Ø 0 for every x (F (x) is non-decreasing so cannot have a negative first derivative).
2.

s Œ
≠Œ f(x)dx = F (Œ) = 1.

Note that f(x) > 1 is possible (consider a range space consisting only of a tiny interval h,
then for h small enough, our previous argument plus property 2 gives hf(x) ¥ 1).

Example 5.6. Let X œ [0, 1
2 ] continuous with constant pdf, f(x) = c (we will recognise this

as a uniform random variable later). Find c.

Solution. Using property 2 we have
⁄ Œ

≠Œ
f(x)dx = 1 =

⁄ 1
2

0
cdx = [cx]

1
2
0 =

c

2
.

So c = 2 ( > 1) .

Example 5.7. Suppose a continuous random variable X œ [0, 1] has pdf f(x) that is propor-
tional to x. Find f(x).

Solution. To solve this problem, we first note that X is on [0, 1] and so, by property 2,
⁄ 1

0
f(x)dx = 1.

f(x) = kx for some k so we have
⁄ 1

0
kxdx = k

5
x2

2
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0
=

k

2
= 1

which implies that f(x) = 2x for x œ [0, 1] and 0 otherwise.

Example 5.8. Suppose you have a battery powered toy which will run out of charge in T
hours. Suppose, further, that the pdf of time T is

f(t) =
;

C(10 ≠ t) 0 < t < 10
0 otherwise.
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a. Find C.
b. Find P (T = 7).
c. Find the probability that the toy lasts more than 8 hours.

Solution. Firstly,

a.

F (Œ) =
⁄ Œ

≠Œ
f(t)dt = 1

=
⁄ 10

0
C(10 ≠ t)dt

= C

⁄ 10

0
(10 ≠ t)dt = C

5
10t ≠

t2

2

610

0
= C(100 ≠ 50) = 50C.

So C = 1/50.

b. Of course, as T is continuous P (T = 7) = 0.

c. This is written P (T > 8) and

P (T > 8) = 1 ≠ P (T Æ 8)

= 1 ≠
⁄ 8

0

1
50

(10 ≠ t)dt

= 1 ≠
1
50

5
10t ≠

t2

2

68

0

= 1 ≠
1
50

(80 ≠ 32) = 1 ≠
48
50

=
1
25

.

Example 5.9. Suppose we conduct a sequence of independent coin tosses with probability
p of tossing heads, stopping when we first toss a head. Let X be the random variable that
takes the number of tosses required to toss a head and stop the sequence. Then

P (X = n) = (1 ≠ p)n≠1p,

as it would take n ≠ 1 tails and then one head in sequence to stop the experiment at the nth
toss. Clearly, p(x) satisfies property 1 for a discrete random variable, so to prove it is a valid
probability mass function, we need to sure that

Œÿ

n=1

p(n) = 1.

5.1.2 Digression: Arithmeric and Geometric series
When doing calculatons with discrete probability distributions, we must often evaluate and
expand series. We present a few key results that will be used throughout the rest of this
course in probability calculations. More complete derivations will be presented to you in
other courses.
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Suppose we have an arithmetic progression a1, a2, . . . with ak = a1 + (k ≠ 1)d for some fixed
di�erence d. Then,

nÿ

k=1

ak = a1 + a2 + · · · + an =∆

2
nÿ

k=1

ak = a1 + a2 + · · · + an + an + an≠1 + · · · + a1

= (a1 + an) + (a2 + an≠1) + · · · + (an≠1 + a2) + (an + a1)
Each bracketed element is the same value as, e.g.

(ai + an≠i+1) = a1 + (i ≠ 1)d + a1 + (n ≠ i + 1)d
= 2a1 + nd

= a1 + an.

So
nÿ

k=1

ak =
n(a1 + an)

2
.

For example, the sum of the first n integers is the sum of an arithmetic progression with
common di�erence 1, so that

nÿ

k=1

k =
n(n + 1)

2
.

A geometric progression is a sequence a1, a2, . . . where each member of the sequence is mul-
tiplied by a fixed number r. So

ak = rak≠1, ak = rk≠1a,

where a = a1. To work out the sum of a geometric sequence, note that
nÿ

k=1

ak =
n≠1ÿ

k=0

rka = a + ra + r2a + · · · + rn≠1a,

so that
nÿ

k=1

ak ≠ r

nÿ

k=1

ak = a ≠ rna =∆

nÿ

k=1

ak =
a ≠ rna

1 ≠ r
.

As n æ Œ, this has a finite limit for |r| < 1 (rn æ 0). Hence, for |r| < 1 we have
Œÿ

k=0

rka =
a

1 ≠ r
.

Note then we have
1

1 ≠ x
=

Œÿ

k=0

xk

for |x| < 1 and we can di�erentiate to get

1
(1 ≠ x)2 =

Œÿ

k=0

kxk≠1

=
Œÿ

k=1

kxk≠1 =
Œÿ

n=0

(n + 1)xn.
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In Example 5.9 we saw the pmf of a random variable (number of tosses until the first head)
was p(n) = P (X = n) = (1 ≠ p)n≠1p. To check this satisfies property 2, we have

Œÿ

k=1

(1 ≠ p)k≠1p =
Œÿ

n=0

(1 ≠ p)np

=
p

1 ≠ (1 ≠ p)
=

p

p
= 1.

Note P (X > n) = (1 ≠ p)n as the first n tosses must be tails for this to happen. Hence the
cdf of this distribution (which is known as the geometric distribution) is

P (X Æ x) = 1 ≠ (1 ≠ p)n

by property 2.

5.2 Common distributions and their applica-
tions

We have just seen one example distribution the geometric. We will now examine some more
and some of the applications they are used for.

5.2.1 The Uniform Distribution

Definition 5.7. Let X be a discrete random variable with range space R = {1, . . . , n}. X
has the discrete uniform distribution if its probability mass function is

P (X = x) =
;

1
n x œ R

0 otherwise

Here is a plot of the pmf for n=10

This is the probability distribution describing the case that “all outcomes are equally likely”.
It’s close cousin is the continuous version, claiming that all intervals on a predefined domain
are equally likely. This idea requires a constant pdf (try to prove this as an exercise).

Definition 5.8. Let X be a continuous random variable on [a, b]. X has the continuous
uniform distribution (normally shortened to the uniform distribution) if its probability
density function is constant on [a, b] and 0 otherwise.

We can derive the pdf of any particular uniform distribution (finding the constant) by ensuring
that the pdf integrates to 1.

⁄ b

a

f(x)dx =
⁄ b

a

kdx = 1 =∆

k =
1

b ≠ a

Note that the cdf is a straight line. The pdf and cdf are shown in here
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To write that a random variable has a uniform distribution we write X ≥ Unif(a, b), and for
the standard distribution we write X ≥ Unif(0, 1).

The ≥ is read as ‘is distributed as’ and can be used for any distribution. For instance we can
write X ≥ Geo(p) to show that X has a geometric distribution with parameter p.

At first glance the uniform looks to be a fairly uninteresting distribution but it is the basis
of a lot of statistics. If we want to simulate from any distribution using a computer, we must
start with a random number. This is a draw from the standard uniform distribution, i.e. a
number between 0 and 1 where any outcome is equally likely.

The importance of such numbers rests on the following theorem.

Theorem 5.1 (The Probability Integral Transform). Let F be a cdf which is a continuous

function, strictly increasing on the support of the distribution. This means that the inverse

F ≠1
exists and is a function from [0,1] to the support of the distribution (often the real line).

Then we have

1. Let U ≥ Unif(0, 1) and X = F ≠1(U). Then X is a random variable with cdf F .

2. Let X be a random variable with cdf F . Then F (X) ≥ Unif(0, 1).

Proof. 1. Let U ≥ Unif(0, 1) and X = F ≠1(U). ’x œ R.

P (X Æ x) = P (F ≠1(U) Æ x) = P (U Æ F (x)) = F (x)

since P (U Æ u) = u for u œ (0, 1),

so the cdf of X is F , as claimed.

2. Let X have the cdf F . We want to find the cdf of Y = F (X). From the definition of
the cdf Y takes values in [0, 1], P (Y Æ y) equals 0 for y Æ 0 and equals 1 for y Ø 1.
For y œ [0, 1]

P (Y Æ y) = P (F (X) Æ y) = P (X Æ F ≠1(y)) = F (F ≠1(y)) = y

Thus Y has a Unif(0, 1) distribution.

The probability integral transform means that if we can simulate from a standard uniform we
can simulate from any randon variable with a continuous cdf. There are more general versions
that include discrete random variables. The implications of this are enormous. Although we
may not use the probability integral transform itself to simulate from a given random variable
the fact of its existence allows us to search for faster algorithms knowing that the simulation
can be done.

Example 5.10. Supose the pdf of a distribution is given by

f(x) =
;

exp(≠x) x > 0
0 otherwise

(this is an example of an exponential distribution as we will see later). First we need to
compute the cdf by integrating the pdf.

F (x) =
⁄ x

0
exp(≠t)dt = 1 ≠ exp(≠x).

We now set F (X) = U which gives
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U = 1 ≠ exp(≠X).
Rearranging gives

1 ≠ U = exp(≠X)

Since U is a uniform random number in (0, 1) then 1 ≠ U is also a uniform random number
in (0, 1) so we can write

U = 1 ≠ U

which gives

X = ≠ ln(U).
So if I take the natural log of uniform random numbers on [0,1], I will obtain numbers that
are draws from the distribution with pdf as above.

5.2.2 Random Numbers
In order to use the probability integral transform we need to produce random numbers from
a standard uniform distribution. There are few ways to generate truely random numbers;
measuring radioactive decay may be one. The original Electronic Random Number Indicating
Equipment (ERNIE) used for premium bonds in the 1960’s counted cosmic rays.

However do we actually want ‘truly random’ numbers, or numbers that appear to be random
but are in fact from a predicatble series? Such numbers are known as pseudo-random numbers.

There are a number of good reasons to use pseudo-random numbers rather than ‘truly random’
numbers. For example

• They are much easier to generate inside the computer, counting cosmic rays or radioac-
tive decay would require specialist hardware.

• We can generate the same set of numbers again if we want to repeat a calculation.

The disadvantage is, of course, that the numbers aren’t random! Pseudo-random number
generation involves highly complex and advanced number theory and the algorithms are well
studied and although they all fail some tests of randomness, for most purposes they can be
considered random.

As an example we will look at the linear congruential random number generator. Consider a
sequence of integers Xn such that

Xn+1 = aXn + c mod m.

We start the sequence for some random number seed, X0. This is multiplied by the constant a,
is added to the constant c and the remainder is taken from the integer m. The pseudo-random
numbers are given by Xn/m.

The values used for a,c and m vary but, for example, in the book Numerical Recipes they use
a = 1664525, c = 1013904223, m = 232.

Although the use of linear congruential generators is still widespread other more advanced
algorithms are taking their place. For example the default pseudo-random number generator
in R is the Mersenne-Twister which uses a rather more complex algorithm. In all cases
though the pseudo-random numbers are a sequence which is started with a random number

seed. If we start the sequence with the same seed we get the same sequence of pseudo-random
numbers. This can be an advantage as it allows you to repeat the sequence if you want to.
Most computer systems (such as R) will use some function of the time to initiate the sequence
if you don’t explicitly supply a random number seed.
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5.2.3 Random Numbers in R
To generate random numbers in R we use the command

runif(n)

We can specify the number, n, to be generated. If we want to generate randon numbers from
a non-standard uniform distribution we can add the values of the limits (a,b) with

runif(n, min=a, max=b)

If we want to set the randon number seed we use the command

set.seed(seed)

where seed is an integer. Starting with the same seed will generate the same series of pseudo-
random numbers. If you don’t specify a seed R generates one from a combination of the time
and process id in the computer.

By default R uses the Mersenne-Twister to generate the random numbers. However, this can
be changed in the call to set.seed.

5.2.4 The Bernoulli Distribution
Definition 5.9. A random variable X is said to have bernoulli distribution with probability
p, written X ≥ Ber(p) if it can only take the values 0 or 1 and P (X = 1) = p.

An example might be a game where there is a probability of p of winning (e.g. tossing an
unfair coin where winning means you land heads), and otherwise you lose. Then X is the
number of wins (and in 1 game that can only be 1 or 0).

A “game” such as this is known as a Bernoulli Trial. The idea of a Bernoulli trial is an
important one in statistics and we often refer to Independent Repeated Bernoulli Trials. These
are a series of trials where the probability of success is constant and each trial is independent
of all the others (i.e. the result of one does not a�ect the results of any of the others).

5.2.5 The Binomial Distribution
Consider an set of n independent repeated Bernoulli trials, what is the probability of getting
(0, 1, . . . , n) successes in our n trials?

If we have x successes we must have n ≠ x failures. The number of ways of getting x successes
and n ≠ x failures is given by the binomial coe�cient. Since we have a series of independent
Bernoulli trials the probability of each success is p and the probability of each failure is (1≠p)
the probability of x successes is given by

P (X = x) =
!n

x

"
px(1 ≠ p)n≠x

Definition 5.10. A discrete random variable X with range space {0, 1, 2, . . . , n} has a bino-

mial distribution, with probability p, written X ≥ Bin(n, p), if it can be represented as the
sum of n independent Bernoulli trials with probability p.
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Note that its probability mass function is therefore as given above.

If we plot the Binomial pmf for n=10 and p=0.2 we get

n <- 10
p <- 0.2
exp_data <- tibble(x=seq(0,n,1))
exp_data <- mutate(exp_data, y=choose(n,x)*p^x*(1-p)^(n-x))

ggplot(exp_data, aes(x, y)) +
geom_segment(aes(xend = x, yend = 0), size = 10, lineend = "butt")

For p = 0.5 the pmf is symmetric

n <- 10
p <- 0.5
bino_data <- tibble(x=seq(0,n,1))
bino_data <- mutate(bino_data, y=choose(n,x)*p^x*(1-p)^(n-x))

ggplot(bino_data, aes(x, y)) +
geom_segment(aes(xend = x, yend = 0), size = 10, lineend = "butt")

And for p > 0.5 it is a mirror image of p < 0.5. (Why?)

The binomial distribution has a large number of practical applications. It is the correct
distribution to use if we are drawing n things from an infinite population each of whom has
the same probability of being a success, or if there is a finite population and we are sampling
with replacement.

Here is an example from ecology. We wish to know the number of small furry animals in a
wood. We capture a number of then, m say, and we put tags on their ears. We let them
go and the next day we capture n. If the total number of animals is M then the probability
of capturing the animal is m/M (assuming that the tags don’t make it easier or harder to
catch it). The number of marked animals follows a binomial distribution and if we estimate
p (= m/M) from the data we can then estimate the population of small furry animals. We
will do estimation of the parameters next term. In ecology this method of estimating animal
populations is known as mark-release or capture-recapture.

Another example application is in product testing. Say we have a machine that is producing
widgets. If the production process is stable so that the probability of a bad widget (a failure)
is constant, then the number of failures (bad widgets) in a sample of n taken from the output
of the machine is binomial.

The Bernoulli distribution is of course just the binomial with n = 1.

In R we use the commands dbinom, pbinom and rbinom to give the pmf, the cdf and the
sample from the binomial distribution. The function qbinom gives the quantile function -
the value of x such that P (X < x) = q, where q is a specified probability.

5.2.6 The Poisson Distribution

Definition 5.11. Let X = 0, 1, 2, . . . be a discrete random variable. X has a Poisson
distribution with parameter ⁄ if its probability mass function is

P (X = x) =
e≠⁄⁄x

x!
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To see where this distribution comes from, consider a sequence of independent repeated
Bernoulli trials with n such trials per unit time. If the probability of success is ⁄/n we
can write the rate of successes as ⁄ per unit time. Now we let n æ Œ but keep ⁄ constant.

The number of successes, X, has a Binomial distribution so we have

P (X = x) =
n!

x!(n ≠ x)!

1
⁄

n

2x 1
1 ≠

⁄

n

2n≠x

=
n(n ≠ 1) . . . (n ≠ x + 1)

nx

⁄x

x!

1
1 ≠

⁄

n

2n 1
1 ≠

⁄

n

2≠x

æ
⁄xe≠⁄

x!
as n æ Œ,

since, as n æ Œ

n(n ≠ 1) . . . (n ≠ x + 1)
nx

æ 1
1

1 ≠
⁄

n

2n

æ exp(≠⁄)

and 1
1 ≠

⁄

n

2≠x

æ 1.

In R dpois, ppois, qpois and rpois give the pmf, the cdf, the quantile function and a random
variable for the Poisson disitribution.

Here is a plot of the Poisson pmf for ⁄ = 1

n <- 10
theta=1
poi_data <- tibble(x=seq(0,n,1))
poi_data <- mutate(poi_data, y= dpois(x,lambda=theta))

ggplot(poi_data, aes(x, y)) +
geom_segment(aes(xend = x, yend = 0), size = 10, lineend = "butt")

The Poisson distribution is used for the number of events that occur randomly over time.

In this context, from the above derivation we see that the number of trials has to be large
and the probability of success has to be small. One of the early applications of the Poisson
distribution, in the 1880’s, was to the number of deaths of Prussian cavalry o�cers from being
kicked by their horses. There were a lot of o�cers and it was quite rare from them to die from
being kicked.

Anywhere where we have events occurring randomly that are relatively rare (compared to the
number of trials) we can expect to use the Poisson distribution. For example in ecology to
count plants a quadrant (a square of wire) is thrown and the number of plant of interest is
counted. This is repeated a large number of times. If the distribution of plants in space is
random, as opposed to being clustered or spaced on a more regular grid we would expect the
number of plants the quadrants to follow a Poisson distribution if they are growing at random
locations. If they don’t follow the Poisson distribution there is some non-random process at
work, either clustering the plants or some process is inhibiting the growth of plants next to
each other so that they are more spaced apart than would be expected at random.
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5.2.7 The Poisson Process

One of the major applications of the the Poisson distribution is in the study of stochastic

processes. A stochastic process is a sequence of events where the occurance of the events
is governed by some stochastic (random) law. The study of stochastic processes is a little
advanced for a first year statistics course (there is a good third year option), but we will
mention one stochastic process (without proof): the Poisson process. If events happen at
random with a constant rate then the resulting stochastic process is known as a Poisson
process. The parameter of the Poisson process, ◊, gives the rate at which events happen.

5.2.8 The Exponential Distribution

Definition 5.12. A continuous random variable X > 0 has an exponential distribution if its
pdf is

f(x) = ⁄ exp{≠⁄x} ⁄ > 0.

Example 5.11. Show that the exponential distribution is a valid probability distribution.

Solution. To do this we need to show that the pdf is a valid pdf. I.e. that f(x) Ø 0 for all
x and that it integrates to 1. The first part is trivially true for all ⁄ > 0. To see the second,
and noting that the range space is (0, Œ), we have

⁄ Œ

0
f(x)dx =

⁄ Œ

0
⁄e≠⁄xdx

=
#
≠e≠⁄x

$Œ
0

= ≠(0 ≠ 1) = 1

We can derive this as a limiting distribution of a real process, a bit like we did for the Poisson
distribution.

Consider some electronic component, these components break at random. The age of the
component has no influence on the probability of failure which is constant. As we have seen
the number of components breaking over a period of time is given by the Poisson distribution,
but consider now the length of time before a failure.

Because there is no ‘aging’ of the component we can write

P (X Æ x0 + x|X > x0) = P (X Æ x)

where X is the time until the next failure (a random variable).

This says that getting to the time x0 doesn’t a�ect the time to the next failure, it is simply
a restating of our assumption of failures happening at random.

Let f(x) be the pdf of X.

The pdf of X|X > x0 is given by

f(x)
1 ≠ F (x0)

x > x0.

This is the conditional pdf and we will define these formally later this term. This is the same
as the unconditional pdf but for the normalising constant (1 ≠ F (x0)). This is required to
make the pdf integrate to 1 when we remove everything < x0.
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(The probability of being less than x0 is F (x0). So the integral of f(x) conditional on x > x0
is 1 ≠ F (x0))

From our definition of no aging we have

f(x + x0)
1 ≠ F (x0)

= f(x).

Putting x=0 gives
f(x0)

1 ≠ F (x0)
= f(0) = ⁄.

This means that F (X) has to satisfy the di�erential equation
dF (x)

dx
= ⁄(1 ≠ F (x)),

the solution to which is

1 ≠ F (x) Ã e≠⁄x.

Since x has to be positive we have
lim

xæ0
F (x) = 0,

giving

F (x) = 1 ≠ e≠⁄x.

So

f(x) = ⁄ exp (≠⁄x) , x > 0; ⁄ > 0.

The pdf of the standard exponential (with ⁄ = 1) is plotted here.

Sometimes we add an additional parameter which replaces 0 as the minimum value.

In R the functions dexp, pexp, qexp and rexp give the pdf, the cdf, the quantile function and
random draws for the exponential disitribution.

We have seen there is an intimate relationship between the Poisson and exponential distribu-
tions. If events occur as a Poisson process with rate ⁄ the the inter-event times will have an
exponential distribution with the parameter equal to ⁄.

There is also a relationship to the geometric distribution. Remember that the geometric
distribtuion is the distribution of the number of failures before the first success in a series of
independent repeated Bernoulli trials. The pmf is given by

p(x) = p(1 ≠ p)x

where p is the probability of a success.

Let the number of Bernoulli trials per unit time be m and let ⁄/m be the probability of a
success. N is the number of failures until a success and let T be the time to the first success.
Then

P
1

t < T Æ t +
1
m

2
= P (N = mt) =

⁄

m

1
1 ≠

⁄

m

2mt

So the limit as m tends to infinity is

f(t) = lim
mæŒ

P
!

t < T Æ t + 1
m

"

1/m
= ⁄e≠⁄t

which is an exponential distribution.
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5.3 Distribution summaries

5.3.1 Expectation

For a random variable, the probability distribution gives any probability associated with a
particular value (for a discrete variable) or the probability that the variable takes a value within
any interval (for a continuous variable). Often we do not require all of that information, and
instead look to summaries of the random variable.

The most important of these is expectation, which can be thought of as a typical value (the
“expected value” ) or a long-run average of a random variable over many repeated trials of
the stochastic experiment. In this course, we will give the classical definition of expectation
from a probability distribution. In fact, probability can be defined from expectation in some
theories (as those who take MTH3041 will see).

Definition 5.13. Let X be a discrete random variable with range space R and probability
mass function p(x), then it’s expectation, written E [X] is

E [X] =
ÿ

xœR

xp(x).

The analogous definition for continuous random variables is as follows:

Definition 5.14. Let X be a continuous random variable with probability denisty function
f(x), then it’s expectation, written E [X] is

E [X] =
⁄ Œ

≠Œ
xf(x)dx.

Example 5.12. Consider the battery powered toy lasting time T from example 5.8. What
is the expected time the toy will last, E [T ]?

Solution.

E [T ] =
⁄ Œ

≠Œ
tf(t)dt

=
1
50

⁄ 10

0
10t ≠ t2dt

=
1
50

5
5t2 ≠

t3

3

610

0

=
1
50

(500 ≠
1000

3
) =

500
3 ◊ 50

=
10
3

= 3.33.

Example 5.13. Show that the expectation of a geometric random variable with probability
of success p is 1/p.
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Solution. As we saw earlier, for geometric random variables P (X = n) = (1 ≠ p)n≠1p. So

E [X] =
Œÿ

n=1

nP (X = n) =
Œÿ

n=1

n(1 ≠ p)n≠1p

= p

Œÿ

n=1

n(1 ≠ p)n≠1

=
p

(1 ≠ (1 ≠ p))2 =
p

p2 =
1
p

.

The expectation of a real-valued function g(X) is given by

E [g(X)] =
ÿ

xœR

g(x)p(x), E [g(X)] =
⁄ Œ

≠Œ
g(x)f(x)dx,

for discrete and continuous random variables, respectively. For example for continuous X,
E

#
X2

$
=

s Œ
≠Œ x2f(x)dx.

5.3.2 Linearity
Expectation is a linear operator i.e., in both the discrete and continuous cases if X and Y are
random variables, with a, b, c real constants then,

E [aX + bY + c] = aE [X] + bE [Y ] + c.

This can be proved later, when we tackle joint distributons.

As an example of the approach to proving this in general, consider the continuous case for
E [aX + b] .

E [aX + b] =
⁄ Œ

≠Œ
(ax + b)f(x)dx

= a

⁄ Œ

≠Œ
xf(x)dx + b

⁄ Œ

≠Œ
f(x)dx

= aE [X] + b.

Example 5.14. Let X ≥ Bin(n, p). Find E [X] .

Solution. Though it is possibe to solve this by finding

E [X] =
nÿ

x=1

xP (X = x)

directly, it is in fact easier to consider X as the sum of n independent Bernoulli random
variables directly. Let Xi ≥ Ber(p) for i = 1, . . . , n. Then

E [Xi] =
1ÿ

k=0

kP (X = k) = 0 · (1 ≠ p) + 1 · p = p,
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and we have

X = X1 + X2 + · · · + Xn =∆
E [X] = E [X1] + E [X2] + · · · + E [Xn]

= np,

using the linearity of expectation.

5.3.3 Moments

Definition 5.15. The rth moment of a random variable X is E [Xr], for r = 1, 2, . . ..

So, for example, E [X] is the first moment of X and E
#
X2

$
is the second moment.

Definition 5.16. The rth central moment of a random variable X is E [(X ≠ µ)r], for
r = 1, 2, . . ., where µ = E [X].

Note that the 1st central moment of X is always 0 as

E [X ≠ µ] = E [X ≠ E [X]] = E [X] ≠ E [X] = 0.

Definition 5.17. The variance of a random variable X, Var [X], is the 2nd central moment
of X.

Note, using the linearity of expectation, we have the identity

Var [X] = E
#
(X ≠ µ)2$

= E
#
X2 ≠ 2µX + µ2$

= E
#
X2$

≠ 2µE [X] + µ2

= E
#
X2$

≠ E [X]2 ,

which is usually much easier to use for finding Var [X] in practice. The variance measures the
“long run average” of the squared distance between the random variable and its expectation,
hence it is a measure of the expected “spread” of the variable.

Example 5.15. Let X ≥ Unif(0, 2). Find E [X] and Var [X].

Solution. The pdf of the uniform distribution on [0, 2] is f(x) = 1
2 .

E [X] =
⁄ 2

0
xf(x)dx =

⁄ 2

0

x

2
dx =

5
x2

4

62

0
= 1,

and

E
#
X2$

=
⁄ 2

0
x2f(x)dx =

⁄ 2

0

x2

2
dx =

5
x3

6

62

0

=
4
3

.
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So
Var [X] = E

#
X2$

≠ E [X]2 =
1
3

.

Example 5.16. For X ≥ Ber(p),

Var [X] = E
#
X2$

≠ E [X]2

= p ≠ p2

= p(1 ≠ p).

Example 5.17. Let X ≥ Exp(⁄) with

f(x) =
;

⁄e≠⁄x x > 0
0 otherwise.

Find Var [X] .

Solution. We first require E [X], which is

E [X] =
⁄ Œ

0
x⁄e≠⁄xdx

=
#
xe≠⁄x

$Œ
0

+
⁄ Œ

0
e≠⁄xdx

=
Ë 1

⁄
e≠⁄x

ÈŒ

0

=
1
⁄

.

Similarly,

E
#
X2$

=
⁄ Œ

0
x2⁄e≠⁄xdx

=
#
x2e≠⁄x

$Œ
0

+
⁄ Œ

0
2xe≠⁄xdx

=
Ë

≠
2x

⁄
e≠⁄x

ÈŒ

0
+ 2

⁄ Œ

0

1
⁄

e≠⁄xdx

= 2
Ë

≠
1

⁄2 e≠⁄x
ÈŒ

0

=
2

⁄2 .

So, we have

Var [X] = E
#
X2$

≠ E [X]2

=
2

⁄2 ≠
1

⁄2

=
1

⁄2
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For X1, . . . , Xn independent and X =
qn

i=1 Xi, we have

Var [X] =
nÿ

i=1

Var [Xi]

(this will be proved later in the course, when we meet covariance). For now we can use it
when we have independent random variables.

Example 5.18. Let X ≥ Bin(n, p). As seen previously, X =
qn

i=1 Xi and Xi ≥ Ber(p), so

Var [X] =
nÿ

i=1

Var [Xi] =
nÿ

i=1

p(1 ≠ p) = np(1 ≠ p).

Instead of variance, we often work with the standard deviation of a random variable.

Definition 5.18. The standard deviation of a random variable, X, is defined to be

sd [X] =


Var [X].

Definition 5.19. The rth standardised central moment of a random variable X is
E

Ë
(X≠µ)r

‡r

È
, where ‡ = sd [X] is the standard deviation of X.

Definition 5.20. The skewness of a random variable X, also known as the skew of X, is
the 3rd standardised central moment of X.

The skewness measures the asymmetry of a distribution. If a random variable has a symmetric
distribution, average cubic departures from its mean will cancel out and the skew will be zero.
Negatively and positively skewed distributions typically arise from asymteric tails, where
negative skew, typically has a longer left tail, and positive skew has a typically longer right
tail.

skewBeta <- function(a,b){(2*(b-a)*sqrt(a+b+1))/((a+b+2)*sqrt(a*b))}
skewBeta(9,3)

## [1] -0.5947617

par(mfrow=c(1,2))
x <- seq(from=0,to=1,by=0.01)
plot(x,dbeta(x,3,11),xlim=c(0,1),col=2,type=�l�)
plot(x,dbeta(x,11,3),xlim=c(0,1),col=2,type=�l�)
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5.3.4 Quantiles

There are other important distribution summaries away from moments. Quantiles are perhaps
the most useful of these as they report key probabilities.

Quantiles are cut-points that divide the range of a random variable with a probability dis-
tribution into intervals of equal probability. There is one less quantile than the number of
intervals created.

Let the cdf of a random variable be F (x). The q-quantiles are the set {F ≠1( 1
q ), F ≠1( 2

q ), . . . , F ≠1( q≠1
q )}.

Some quantiles have special names, alluding to the number of intervals (q +1) they determine.

• The 2-quantile is called the median, m, so that P (X Æ m) = 1/2.
• The 3-quantiles are called terciles, so that P (X Æ w1) = 1/3, and P (X Æ w2) = 2/3,

wher w1 and w2 are the upper and lower terciles.
• The 4-quantiles are called quartiles. The first quartile is w1 with P (X Æ w1) = 1/4

and is called the lower quartile. The first quartile is w3 with P (X Æ w3) = 3/4 and
is called the upper quartile. w3 ≠ w1 is known as the inter-quartile range and is
another measure of spread. Note that the 2nd quartile is the median.

• There are also deciles, (10-quantiles) and percentiles, (100-quantiles).

Example 5.19. X ≥ Unif(0, 3). Find the median and E [X] .

Solution. First,

E [X] =
⁄ 3

0
xf(x)dx =

⁄ 3

0

x

3
dx

=
5

x2

6

63

0
=

3
2

.
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Next, the median, M is found via
⁄ M

0
f(x)dx =

1
2

=
Ë

x

3

ÈM

0
=

M

3

=∆ M =
3
2

.

Example 5.20. Let X ≥ Exp(⁄). Find the Median and inter quartile range of X.

Solution. The pdf of X is
f(x) = ⁄e≠⁄x; x > 0.

The median, M , is such that
⁄ M

0
⁄e≠⁄xdx =

1
2

≈∆

#
≠e≠⁄x

$M

0
= 1 ≠ e≠⁄M =

1
2

=∆ e≠⁄M =
1
2

=∆ M =
1
⁄

log(2).

IQR = w3 ≠ w1. w3 is such that
⁄ w3

0
⁄e≠⁄xdx =

3
4

= 1 ≠ e≠⁄w3 ≈∆

w3 =
1
⁄

log(4).

w1 is such that
⁄ w1

0
⁄e≠⁄xdx =

1
4

= 1 ≠ e≠⁄w1 ≈∆

w1 =
1
⁄

log(
4
3

).

So
IQR =

1
⁄

(log(4) ≠ log(
4
3

)) =
1
⁄

log(3).

5.3.5 The Gamma distribution and Gamma function
A random variable has a Gamma distribution if it has a pdf, f(x), with

f(x) =
1
C

—–x–≠1e≠—x, for x > 0.

for known parameters –, — > 0 that control the shape of the distribution. The value C is
chosen to ensure that f(x) integrates to 1. So

C =
⁄ Œ

0
—–x–≠1e≠—xdx.
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Using the change of variables u = —x we have

C =
⁄ Œ

0
u–≠1e≠udu,

which means that C only depends on –. C is a function of – known as the gamma function,
usually written

�(–) =
⁄ Œ

0
u–≠1e≠udu.

Though this is not usually analytically tractable, �(·) has some useful properties. Firstly, note
�(1) = 1. Also, by integrating by parts we have

�(– + 1) =
Ë

≠
1

– + 1
u–+1e≠u

ÈŒ

0
+ –

⁄ Œ

0
u–≠1e≠udu

= –�(–).

This is a general property for any – > 0. Note, if – is a positive integer, �(–) = (– ≠ 1)!
(though it can often help avoid mistakes to work with gamma functions directly, rather than
converting to factorials).

The expectation of a gamma distribution is found using a useful trick for solving integrals for
this type of distribution.

E [X] =
⁄ Œ

0

—–

�(–)
x–e≠—xdx

=
—–�(– + 1)
�(–)—–+1

⁄ Œ

0

—–+1

�(– + 1)
x–e≠—xdx

=
—–�(– + 1)
�(–)—–+1

=
�(– + 1)

—�(–)
=

–�(–)
—�(–)

=
–

—
,

where the integral disappears because we use the fact that the Gamma pdf integrates to 1.

5.4 The Normal Distribution

5.4.1 A VERY brief introduction to multiple integration
Multiple integration is a fundamental requirement for mathematics, and is very important
within statistics and probability. It is typically required as soon as we cover joint distribu-
tions (in a few lectures), arising from the natural extension of the cdf of a random variable,
F (X) to multiple related random variables, F (X, Y, ...). (E.g. random variables rainfall and
temperature cannot be independent and we might want to forecast them at the same time).

We will see joint distributions and joint cdfs as multiple integrals soon, but it makes sense to
briefly look at multiple integration first so we can use it for the Normal distribution.

You will see multiple integration formally in Methods next term. All we need is the very
basics. If we have a function in n variables, f(x1, x2, , . . . , xn), we can integrate it over a
domain, D, within those n dimensions to find the volume of that domain under the surface
defined by f .
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We would write this as⁄

Dx1

⁄

Dx2

· · ·
⁄

Dxn

f(x1, x2, . . . , xn)dx1dx2 · · · dxn

where the Dxi represent expressions for the domains in each variable. For example, we might
have x œ [≠1, 1], y œ [0, 2] and f(x, y) = x4 ≠ 2y and the integral is

⁄ 2

0

⁄ 1

≠1
(x4 ≠ 2y)dxdy.

The notation means that you first do the interior integral, then the exterior. So in the above
example,

⁄ 2

0

⁄ 1

≠1
(x4 ≠ 2y)dxdy =

⁄ 2

0

3⁄ 1

≠1
(x4 ≠ 2y)dx

4
dy

=
⁄ 2

0

5
x5

5
≠ 2yx

61

≠1
dy

=
⁄ 2

0
(

2
5

≠ 2y + 2y)dy =
4
5

.

Often the order you do things can make life easier or harder. Above, the terms in y cancelled
out. When f is well behaved (and it always will be in this course), the order of integration
can be swapped and so finding the right way to do things is important.

Limits can be more complicated. E.g., in the above problem, suppose x œ [≠1, 1] as before,
but y œ [≠x2, x2]. Then, it might make sense to swap the order of integration to work with

⁄ 1

≠1

⁄ x2

≠x2
(x4 ≠ 2y)dydx.

Sometimes, integrals are very hard to compute but can be simplified by transforming vari-
ables. Consider, for example, the function f(x, y) = x over the unit circle x2 + y2 Æ 1. This
particular integral is tricky because the limits are hard to work with. Changing variables
(like substitution) can make these integrals very easy. The general idea in 2 dimensions is as
follows (the extension to n dimensions is immediate and will be covered in Methods: Let

x = x(u, v), y = y(u, v)
functions of new variables u and v (so (x, y) æ (u, v)) Then⁄ ⁄

D

f(x, y)dxdx =
⁄ ⁄

�
f(x(u, v), y(u, v))|J(u, v)|dudv,

where � is the image of D in the new coordinates and J is the Jacobian given by

J(u, v) =

----
ˆx
ˆu

ˆy
ˆu

ˆx
ˆv

ˆy
ˆv

---- =
ˆx

ˆu

ˆy

ˆv
≠

ˆx

ˆv

ˆy

ˆu
.

A particularly useful transformation, which can be used for our circle example, is the trans-
formation to polar coordinates.

x = r cos ◊, y = r sin ◊,

where r represents a radius and ◊ an angle in the transformed coordinates. The Jacobian
of this transformation is just r and, for our problem above we have x2 + y2 = r2 Æ 1 and
0 Æ ◊ Æ 2fi. So the integral becomes⁄ 2fi

0

⁄ 1

0
r2 cos ◊drd◊ =

⁄ 2fi

0

1
3

cos ◊d◊ = 0

You will learn a great deal more about multiple integration in Methods.
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5.4.2 The Normal distribution

Definition 5.21. Let X be a random variable with X œ (≠Œ, Œ). X has a Normal or
Gaussian distribution with mean µ and variance ‡2, written X ≥ N(µ, ‡2) if its pdf is

f(x) =
1

Ô
2fi‡

exp
1

≠
1

2‡2 (x ≠ µ)2
2

.

The Normal distribution was first used by the German mathematician Gauss to discribe
the errors in the measured positions of stars in 1816 (although Laplace had used it as an
approximation to the Binomial in the eighteenth century).

The standard Normal is given by setting µ = 0 and ‡ = 1:

f(x) =
1

Ô
2fi

exp
1

≠
1
2

x2
2

, ≠Œ < x < Œ,

and is often written „(x).

It has the well known bell-shape shown here.

It isn’t possible to evaluate the definite integral

G(x) =
⁄ x

≠Œ
exp

1
≠

1
2

t2
2

dt Ã F (x),

but we can evaluate G(Œ).

Proposition 5.1. ⁄ Œ

≠Œ
exp

1
≠

1
2

x2
2

dx =
Ô

2fi

Proof. To prove the proposition we use an amazing trick:- rather than try to integrate

⁄ Œ

≠Œ
exp

3
≠

x2

2

4
dx,

we multiply the integral by itself and integrate

⁄ Œ

≠Œ
exp

3
≠

x2

2

4
dx

⁄ Œ

≠Œ
exp

3
≠

x2

2

4
dx.

Here, x is a dummy variable, so we can replace it by y (or anything we like) in the second
integral, giving

⁄ Œ

≠Œ
exp

1
≠

1
2

x2
2

dx

⁄ Œ

≠Œ
exp

1
≠

1
2

y2
2

dy.

Rearranging gives ⁄ Œ

≠Œ

⁄ Œ

≠Œ
exp

3
≠

x2 + y2

2

4
dxdy.

This works because when integrating wrt y, the integral in x is a constant (so can come inside
the integral). We now change to polar variables, i.e. to r2 = x2 + y2 and ◊ = tan(x/y). This
gives
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⁄ 2fi

0

⁄ Œ

0
exp

3
≠

r2

2

4
rdrd◊

Note the extra r that comes from the transformation (again, if the reason why this appears
is not familiar now, it will be after transformations are tackled in Methods and later in Term
2).

Making a second substitution u = r2/2, du = rdr gives

⁄ 2fi

0

⁄ Œ

0
exp (≠u) dud◊

which is

⁄ 2fi

0
1d◊ = 2fi

Therefore

⁄ Œ

≠Œ
exp

1
≠

1
2

x2
2

dx =
Ô

2fi

This shows that the Normal pdf defines a valid probability distribution.

The cdf cannot be written down analytically but can be evaluated numerically. Tables of the
Normal cdf are widely available. The cdf of the standard Normal is very often written as
�(x).

In R we have the following functions for the pdf, the cdf, the quantile function and to simulate
Normal variables: dnorm, pnorm, qnorm and rnorm.

5.4.3 Moments
Consider the standard Normal distribution. The rth moment of this distribution is given by

E [Xr] =
⁄ Œ

≠Œ

1
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx.

We can write this as

E [Xr] =
⁄ 0

≠Œ

1
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx +
⁄ Œ

0

1
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx.

Now consider r odd. By symmetry we have

⁄ 0

≠Œ

1
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx = ≠
⁄ Œ

0

1
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx

So all the odd moments are zero.

Consider now the even moments, again by symmetry we have
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⁄ 0

≠Œ

1
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx =
⁄ Œ

0

1
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx.

So the rth moment is given by

E[Xr] =
⁄ Œ

0

2
Ô

2fi
xr exp

1
≠

1
2

x2
2

dx.

Changing variables t = x2/2 gives

E[Xr] =

Ú
2
fi

2
r+1

2

⁄ Œ

0
t

r≠1
2 e≠tdt ==

2
r
2

Ô
fi

�
1

r + 1
2

2
,

as the integral is a � function. Now

�(n/2) =
(n ≠ 2)!!

Ô
fi

2(n≠1)/2

where n!! = n(n ≠ 2) . . . 1. So

E[Xr] = (r ≠ 1)(r ≠ 3) · · · 3 · 1,

and since E[X] = 0, we have that the variance (for the standard Normal) is 1.

Using the linearity of expectation we can show that for the general Normal distribution,
E [X] = µ and Var [X] = ‡2. Often, for example in the R rountines, µ is refered to as the
mean, ‡2 as the variance and ‡ as the standard deviation.

The parameters µ and ‡2 are location and scale parameters. Changing µ moves the location
of the centre of the distribution while changing ‡2 broadens or narrows the pdf. This is
illustrated here.

5.4.4 Applications of the Normal Distribution

The Normal distribution is the most widely used distribution in statistics and many statis-
ticians will not need to use another distribution during their entire career. For example the
distribution of the height of female students in this room will almost certainly be Normal.

One reason for the ubiquity of the Normal is the Central Limit Theorem.

Theorem 5.2. The Central Limit Theorem states that, under certain conditions, if X̄ is the

mean of a sample of size n, then the distribution of

X̄ ≠ E[X]
Var(X)/n

in the limit as n æ Œ, is the standard Normal regardless of the original distribution of X.

We will prove the Central Limit Theorem next term but the important thing at the moment
is that regardless of the underlying distribution the mean of a large number of observations
will have a Normal distribution.
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5.4.5 Relationship to other distributions

The Normal distribution is often used as an approximation to other distributions. We have
seen that if n is large and p small then the binomial can be approximated by the Poisson.
Remember we used the limit to derive the Poisson. If np is large the Normal can be used as
an approximation to the binomial. Similarly for the Poisson distribution with parameter ⁄ if
⁄ is large the Normal is a good approximation.

5.5 Sampling and Samples
When we collect data we are taking a sample from a population. For example consider the
heights of young women in the UK. we might be interested in knowing the mean height and the
variance or the form of the distribution. This information could be important for a clothing
manufacturer. It would be impractical to measure the height of all the young women in the
UK, the population, so instead we would take a sample (for example the women in this class)
and use the sample to make inferences about the population.

We will use n to denote the size of the sample and write the random variables in the sample
as X1, X2, . . . , Xn, or Xi, i = 1, . . . , n; and the actual sampled values as x1, x2, . . . xn.

If the population has a distribution with pdf f(x) then each Xi has pdf f(x). Since each
member of the sample has the same distribution and since they are independent we refer to
the sample as being independent, identically distributed. This is abbreviated to iid. So if we
write

Xi ≥iid N(0, ‡2) i = 1, . . . , n,

we are saying we have a sample size n each with an independent Normal distribution having
zero mean and variance ‡2.

5.5.1 Sample moments

In the same way as we have moments for a distribution we can define (and calculate) sample

moments.

For example the sample mean is given by

x̄ =
1
n

nÿ

i=1

xi

and the sample variance by
1
n

nÿ

i=1

(xi ≠ x̄)2,

(the mean and variance of the actual sampled values). We will now derive the expected value
of X̄. By definition

E
#
X̄

$
= E

C
1
n

nÿ

i=1

Xi

D
.

By linearity of expectation

E
#
X̄

$
=

1
n

nÿ

i=1

E [Xi] .


