These notes are downloaded from Project Maths
[http://www.logitron.redtoe.co.uk/projectmaths]

C2 Key Points

Binomial Expansion

Using Pascal's triangle - Use when the power is a positive integer

$$
\begin{aligned}
& l \\
& \text { Expand }(2-x)^{5} \\
& (2-x)^{5}=(2+(-x))^{5} \\
& (a+b)^{5}=a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}
\end{aligned}
$$

1) In each term, the sum of the powers $=5$.
2) Use appropriate line in Pascal's Triangle.
3) Remember the bracket around (-x) e.g. $(2+(-x))^{5}$
4) Be careful with the signs.
5) Remember that $(2 x)^{3}$ does NOT equal $2 x^{3}$ - Do not forget the brackets. $(2 x)^{3}=8 x^{3}$.

Notation

$\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$
Where $n!=n(n-1)(n-2)(n-3) \times \ldots . . \times 2 \times 1$ and, by definition $0!=1$

Formula for binomial expansion

$$
\begin{aligned}
(a+b)^{n} & =\binom{n}{0} a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\ldots \ldots .+\binom{n}{n} b^{n} \\
& =a^{n}+n a^{n-1} b+\frac{n(n-1)}{2!} a^{n-2} b^{2}+\ldots \ldots+b^{n}
\end{aligned}
$$

If we had, for example $(2 x-4 y)^{3}$, we would replace a with $2 x$ and b with $(-4 y)$ and also n with 3 .

