
Part 3 General Relativity

H.S. Reall

1 Introduction

Special relativity has a preferred class of observers: inertial (non-accelerating)
observers. Associated to any such observer is a set of coordinates (t, x, y, z)
called an inertial frame. Different inertial frames are related by Lorentz
transformations. The Principle of Relativity states that physical laws should
take the same form in any inertial frame.

Newton’s law of gravitation is

∇2Φ = 4πGρ (1)

where Φ is the gravitational potential and ρ the mass density. Lorentz trans-
formations mix up time and space coordinates. Hence if we transform to
another inertial frame then the resulting equation would involve time deriva-
tives. Therefore the above equation does not take the same form in every
inertial frame. Newtonian gravity is incompatible with special relativity. GR
is the theory that replaces both Newtonian gravity and special relativity.

2 The equivalence principle

2.1 The weak equivalence principle

The equivalence principle was an important step in the development of GR.
There are several forms of the EP, which are motivated by thought experi-
ments involving Newtonian gravity.

In Newtonian theory, one can distinguish between the notions of inertial mass
mI , which appears in Newton’s second law: F = mIa, and gravitational mass,
which governs how a body interacts with a gravitational field: F = mGg.
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Note that this equation defines both mG and g hence there is a scaling
ambiguity g → λg and mG → λ−1mG (for all bodies). We fix this by
defining mI/mG = 1 for a particular test mass, e.g., one made of platinum.
Experimentally it is found that other bodies made of other materials have
mI/mG − 1 = O(10−12) (Eötvös experiment).
The exact equality of mI and mG for all bodies is one form of the weak equiv-
alence principle. Newtonian theory provides no explanation of this equality.
The weak EP implies that a uniform gravitational field cannot be distin-
guished from constant acceleration. To see why, consider a set of particles
with positions xi(t), inertial masses mIi and gravitational masses mGi inter-
acting via forces that depend only on the particle separations. Assume that
there is a uniform gravitational field g. The equations of motion are:

mIiẍi = mGig +
∑
j 6=i

Fji(xj − xi), (2)

where Fji is the force of the jth particle on the ith particle.
Now consider a new frame of reference moving with constant acceleration a
with respect to the first frame. The origin of the new frame has position X(t)
where Ẍ = a. The coordinates of the new frame are t′ = t and x′ = x−X(t).
Hence the equations of motion in this frame are

mIiẍ
′
i = mGig −mIia +

∑
j 6=i

Fji(x
′
j − x′i). (3)

But the weak equivalence principle says that mIi/mGi = 1 for all i so

mIiẍ
′
i = mGi (g − a) +

∑
j 6=i

Fji(x
′
j − x′i). (4)

The laws of mechanics in the accelerating frame are the same as in the first
frame but with a constant gravitational field g′ = g − a. If g = 0 then
the new frame appears to contain a gravitational field g′ = −a: uniform
acceleration is indistinguishable from a uniform gravitational field.
We can define an inertial frame as a reference frame in which the laws of
physics take the simplest form. In the present case, it is clear that this
is a frame with a = g, i.e., a freely falling frame. This gives g′ = 0 so
an observer at rest in such a frame, i.e., a freely falling observer, does not
observe any gravitational field. From the perspective of such an observer,
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the gravitational field present in the original frame arises because this latter
frame is accelerating with acceleration −g relative to him.
Even if the gravitational field is not uniform, it can be approximated by uni-
form for experiments performed in a region of space-time sufficently small
that the non-uniformity is negligible. In the presence of a non-constant grav-
itational field, we define a local inertial frame to be a set of coordinates
(t, x, y, z) that a freely falling observer would define in the same way as coor-
dinates are defined in Minkowski spacetime. The word local emphasizes the
restriction to a small region of spacetime, i.e., t, x, y, z are restricted to small
values.
An alternative way of stating the weak EP is: In a local inertial frame,
particle mechanics is indistinguishable from particle mechanics in an inertial
frame in Minkowski spacetime.

2.2 The strong equivalence principle

Einstein extended the EP to encompass all of physics, not just mechanics: In
a local inertial frame, the results of all experiments will be indistinguishable
from the results of the same experiments performed in an inertial frame in
Minkowski spacetime.
The experimental tests of the weak EP involve ordinary matter, composed
of electrons and nuclei interacting via the electromagnetic force. Nuclei are
composed of protons and neutrons, which are in turn composed of quarks and
gluons, interacting via the strong nuclear force. A significant fraction of the
nuclear mass arises from binding energy. The fact that this is all consistent
with the weak EP is evidence that the strong EP is indeed true.
Note that we have motivated the EP by Newtonian arguments. Since we
restricted to velocities much less than the speed of light, the incompatibility
of Newtonian theory with special relativity is not a problem. But the EP is
supposed to be more general than Newtonian theory. It is a guiding principle
for the construction of a relativistic theory of gravity. In particular, any
theory satisfying the EP should have some notion of ”local inertial frame”.

2.3 Tidal forces

The word ”local” is essential in the above statements of the EP.
Consider a lab, freely falling radially towards the Earth, that contains two
test particles at the same distance from the Earth but separated horizontally:
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The gravitational attraction of the particles is tiny and can be neglected.
Nevertheless, as the lab falls towards Earth, the particles will accelerate
towards each other because the gravitational field has a slightly different
direction at the location of the two particles. This is an example of a tidal
force: a force arising from non-uniformity of the gravitational field. Such
forces are physical: they cannot be eliminated by free fall.

2.4 Bending of light

The strong EP implies that light is bent by a gravitational field.
Consider a uniform gravitational field again. A freely falling laboratory is
a local inertial frame. Inside the lab, the strong EP tells us that light rays
must move on straight lines. But a straight line with respect to the lab
corresponds to a curved path w.r.t to the original frame. In fact, this shows
that light falls in the gravitational field in exactly the same way as a massive
test particle: in time t is falls a distance (1/2)gt2. (The effect is tiny: if
the field is vertical then the time taken for the light to travel a horizontal
distance d is t = d/c. In this time, the light falls a distance h = gd2/(2c2).
Taking d = 1 km, g ≈ 10ms−2 gives h ≈ 5× 10−11m.)

2.5 Gravitational red shift

Alice and Bob are at rest in a uniform gravitational field of strength g in the
negative z-direction. Alice is at height z = h, Bob is at z = 0 (both are on
the z-axis). They have identical clocks. Alice sends light signals to Bob at
constant proper time intervals which she measures to be ∆τA. What is the
proper time interval ∆τB between the signals received by Bob?

Alice and Bob both have acceleration g with respect to a freely falling frame.
Hence, by the EP, this experiment should give identical results to one in which
Alice and Bob are moving with acceleration g in the positive z-direction in
Minkowski spacetime. We choose our freely falling frame so that Alice and
Bob are at rest at t = 0.
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We shall neglect special relativistic effects in this problem, i.e., effects of order
v2/c2 where v is a typical velocity (the analysis can extended to include such
effects). The trajectories of Alice and Bob are therefore the usual Newtonian
ones:

zA(t) = h+
1

2
gt2, zB(t) =

1

2
gt2 (5)

Alice and Bob have v = gt so we shall assume that gt/c is small over the
time it takes to perform the experiment. We shall neglect effects of order
g2t2/c2.
Assume Alice emits the first light signal at t = t1. Its trajectory is z =
zA(t1)− c(t− t1) = h+ (1/2)gt21 − c(t− t1) so it reaches Bob at time t = T1

where this equals zB(T1), i.e.,

h+
1

2
gt21 − c(T1 − t1) =

1

2
gT 2

1 (6)

The second light signal is emitted at time t = t1 + ∆τA (there is no special
relativistic time dilation to the accuracy we are using here so the proper
time interval ∆τA is the same as an inertial time interval). Its trajectory is
z = zA(t1 + ∆τA)− c(t− t1 −∆τA). Let it reach Bob at time t = T1 + ∆τB,
i.e., the proper time intervals between the signals received by Bob is ∆τB.
Then we have

h+
1

2
g(t1 + ∆τA)2 − c(T1 + ∆τB − t1 −∆τA) =

1

2
g(T1 + ∆τB)2. (7)

Subtracting equation (6) gives

c(∆τA −∆τB) +
g

2
∆τA(2t1 + ∆τA) =

g

2
∆τB(2T1 + ∆τB) (8)

The terms quadratic in ∆τA and ∆τB are negligible. This is because we must
assume g∆τA � c, since otherwise Alice would reach relativistic speeds by
the time she emitted the second signal. Similarly for ∆τB.
We are now left with a linear equation relating ∆τA and ∆τB

c(∆τA −∆τB) + g∆τAt1 = g∆τBT1 (9)

Rearranging:

∆τB =

(
1 +

gT1

c

)−1(
1 +

gt1
c

)
∆τA ≈

(
1− g(T1 − t1)

c

)
∆τA (10)
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where we have used the binomial expansion and neglected terms of order
g2T 2

1 /c
2. Finally, to leading order we have T1 − t1 = h/c (this is the time it

takes the light to travel from A to B) and hence

∆τB ≈
(

1− gh

c2

)
∆τA (11)

The proper time between the signals received by Bob is less than that between
the signals emitted by Alice. Time appears to run more slowly for Bob. For
example, Bob will see that Alice ages more rapidly than him.
If Alice sends a pulse of light to Bob then we can apply the above argument
to each successive wavecrest, i.e., ∆τA is the period of the light waves. Hence
∆τA = λA/c where λA is the wavelength of the light emitted by Alice. Bob
receives light with wavelength λB where ∆τB = λB/c. Hence we have

λB ≈
(

1− gh

c2

)
λA. (12)

The light received by Bob has shorter wavelength than the light emitted by
Alice: it has undergone a blueshift. Light falling in a gravitational field is
blueshifted.
This prediction of the EP was confirmed experimentally by the Pound-Rebka
experiment (1960) in which light was emitted at the top of a tower and
absorbed at the bottom. High accuracy was needed since gh/c2 = O(10−15).
An identical argument reveals that light climbing out of a gravitational field
undergoes a redshift. We can write the above formula in a form that applies
to both situations:

∆τB ≈
(

1 +
ΦB − ΦA

c2

)
∆τA (13)

where Φ is the gravitational potential.

2.6 Curved spacetime

The equivalence principle implies that if two test masses initially have the
same position and velocity then they will follow exactly the same trajectory in
a gravitational field, even if they have very different composition. (This is not
true of other forces: in an electromagnetic field, bodies with different charge
to mass ratio will follow different trajectories.) This suggested to Einstein
that the trajectories of test masses in a gravitational field are determined
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by the structure of spacetime alone and hence gravity should be described
geometrically.
To see the idea, consider a spacetime in which the proper time between two
infinitesimally nearby events is given not by the Minkowskian formula

c2dτ 2 = c2dt2 − dx2 − dy2 − dz2 (14)

but instead by

c2dτ 2 =

(
1 +

2Φ(x, y, z)

c2

)
c2dt2−

(
1− 2Φ(x, y, z)

c2

)
(dx2 +dy2 +dz2), (15)

where Φ/c2 � 1. Let Alice have spatial position xA = (xA, yA, zA) and Bob
have spatial position xB. Assume that Alice sends a light signal to Bob
at time tA and a second signal at time tA + ∆t. Let Bob receive the first
signal at time tB. What time does he receive the second signal? We haven’t
discussed how one determines the trajectory of the light ray but this doesn’t
matter. The above geometry does not depend on t. Hence the trajectory of
the second signal must be the same as the first signal (whatever this is) but
simply shifted by a time ∆t:

Hence Bob receives the second signal at time tB + ∆t. The proper time
interval between the signals sent by Alice is given by

∆τ 2
A =

(
1 +

2ΦA

c2

)
∆t2, (16)

where ΦA ≡ Φ(xA). (Note ∆x = ∆y = ∆z = 0 because her signals are sent
from the same spatial position.) Hence, using Φ/c2 � 1,

∆τA =

(
1 +

2ΦA

c2

)1/2

≈
(

1 +
ΦA

c2

)
∆t. (17)
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Similarly, the proper time between the signals received by Bob is

∆τB ≈
(

1 +
ΦB

c2

)
∆t. (18)

Hence, eliminating ∆t:

∆τB ≈
(

1 +
ΦB

c2

)(
1 +

ΦA

c2

)−1

∆τA ≈
(

1 +
ΦB − ΦA

c2

)
∆τA, (19)

which is just equation (13). The difference in the rates of the two clocks has
been explained by the geometry of spacetime. The geometry (15) is actually
the geometry predicted by General Relativity outside a time-independent,
non-rotating distribution of matter, at least when gravity is weak, i.e., Φ/c2 �
1. (This is true in the Solar System: |Φ|/c2 = GM/(rc2) ∼ 10−5 at the sur-
face of the Sun.)

3 Differentiable manifolds

3.1 Introduction

In Minkowski spacetime we usually use inertial frame coordinates (t, x, y, z)
since these are adapted to the symmetries of the spacetime so using these
coordinates simplifies the form of physical laws. However, a general spacetime
has no symmetries and therefore no preferred set of coordinates. In fact, a
single set of coordinates might not be sufficient to describe the spacetime.
A simple example of this is provided by spherical polar coordinates (θ, φ) on
the surface of the unit sphere S2 in R3:

These coordinates are not well-defined at θ = 0, π (what is the value of φ
there?). Furthermore, the coordinate φ is discontinuous at φ = 0 or 2π.

8



To describe S2 so that a pair of coordinates is assigned in a smooth way to
every point, we need to use several overlapping sets of coordinates. Gener-
alizing this example leads to the idea of a manifold. In GR, we assume that
spacetime is a 4-dimensional differentiable manifold.

3.2 Definition of a manifold

You know how to do calculus on Rn. How do you do calculus on a curved
space, e.g., S2? Locally, S2 looks like R2 so one can carry over standard
results. However, one has to confront the fact that it is impossible to use a
single coordinate system on S2. In order to do calculus we need our coordi-
nates systems to ”mesh together” in a smooth way. Mathematically, this is
captured by the notion of a differentiable manifold:

Definition. An n-dimensional differentiable manifold is a set M together
with a collection of subsets Oα such that

1.
⋃
αOα = M , i.e., the subsets Oα cover M

2. For each α there is a one-to-one and onto map φα : Oα → Uα where Uα
is an open subset of Rn.

3. If Oα and Oβ overlap, i.e., Oα ∩ Oβ 6= ∅ then the map φβ ◦ φ−1
α maps

from φα(Oα ∩Oβ) ⊂ Uα ⊂ Rn to φβ(Oα ∩Oβ) ⊂ Uβ ⊂ Rn. We require
that this map be smooth (infinitely differentiable).
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Remarks.

1. The maps φα are called charts or coordinate systems. Sometimes we
shall write φα(p) = (x1

α(p), x2
α(p), . . . xnα(p)) and refer to xiα(p) as the

coordinates of p. The set of charts on M is called its atlas.

2. Strictly speaking, we have defined above the notion of a smooth man-
ifold. If we replace ”smooth” in the definition by Ck (k-times contin-
uously differentiable) then we obtain a Ck-manifold. We shall always
assume the manifold is smooth.

Examples.

1. Rn: this is a manifold with atlas consisting of the single chart φ :
(x1, . . . , xn) 7→ (x1, . . . , xn).

2. S1: the unit circle, i.e., the subset of R2 given by (cos θ, sin θ) with
θ ∈ R. We can’t define a chart by using θ ∈ [0, 2π) as a coordinate
because [0, 2π) is not open. Instead we define one chart by φ1 : S1 −
(1, 0)→ (0, 2π), φ1(p) = θ1 with θ1 defined by:

and we defined a second chart by φ2 : S1−(−1, 0)→ (−π, π), φ2(p) = θ2

where θ2 is defined by:
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Neither chart covers all of S1 but together they form an atlas. The
charts overlap on the ”upper” semi-circle and on the ”lower” semi-
circle. On the first of these we have φ2 ◦ φ−1

1 (θ1) = θ1. On the second
we have φ2 ◦ φ−1

1 (θ1) = θ1− 2π. These are obviously smooth functions.

3. S2: the two-dimensional sphere defined by the surface x2 + y2 + z2 = 1
in Euclidean space. Introduce spherical polar coordinates in the usual
way:

x = sin θ cosφ, y = sin θ sinφ, z = cos θ (20)

these equations define θ ∈ (0, π) and φ ∈ (0, 2π) uniquely. Hence this
defines a chart ψ : O → U where O is S2 with the points (0, 0,±1) and
the line of longitude y = 0, x > 0 removed:

and U is (0, π) × (0, 2π) ⊂ R2. We can define a second chart using a
different set of spherical polar coordinates defined as follows:

x = − sin θ′ cosφ′, y = cos θ′, z = sin θ′ sinφ′, (21)

where θ′ ∈ (0, π) and φ′ ∈ (0, 2π) are uniquely defined by these equa-
tions. This is a chart ψ : O′ → U ′, where O′ is S2 with the points
(±1, 0, 0) and the line z = 0, x < 0 removed:
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and U ′ is (0, π)× (0, 2π). Clearly S2 = O ∪O′. The functions ψ ◦ ψ′−1

and ψ′ ◦ ψ−1 are smooth on O ∩O′ so these two charts define an atlas
for S2.

A given set M may admit many atlases, e.g., one can simply add extra charts
to an atlas. We don’t want to regard this as producing a distinct manifold.
We say that two atlases are compatible if their union is also an atlas. The
union of all atlases compatible with a given atlas is called a complete atlas:
it is an atlas which is not contained in any other atlas. We shall always
assume that were are dealing with a complete atlas. (None of the above
examples gives a complete atlas; such atlases necessarily contain infinitely
many charts.)

4 Smooth functions

We shall need the notion of a smooth function on a smooth manifold. If
φ : O → U is a chart and f : M → R then note that f ◦ φ−1 is a map from
U , i.e., a subset of Rn, to R.

Definition. A function f : M → R is smooth if, and only if, for any chart
φ, F ≡ f ◦ φ−1 : U → R is a smooth function.

Remark. In GR, a function f : M → R is sometimes called a scalar field.

Examples

1. Consider the example of S1 discussed above. Let f : S1 → R be
defined by f(x, y) = x where (x, y) are the Cartesian coordinates in
R2 labelling a point on S1. In the first chart φ1 we have f ◦ φ−1

1 (θ1) =
f(cos θ1, sin θ1) = cos θ1, which is smooth. Similary f ◦φ−1

2 (θ2) = cos θ2

is also smooth. If φ is any other chart then we can write f ◦ φ−1 =
(f ◦ φ−1

i ) ◦ (φi ◦ φ−1), which is smooth because we’ve just seen that
f ◦ φ−1

i are smooth, and φi ◦ φ−1 is smooth from the definition of a
manifold. Hence f is a smooth function.

2. Consider a manifold M that is covered by a single chart φ but whose
atlas also contains other charts φα. Let φ : p 7→ (x1(p), x2(p), . . . xn(p)).
Then we can regard x1 (say) as a function on M . Is it a smooth
function? Yes: x1 ◦ φ−1

α is smooth for any chart φα, because it is the
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first component of the map φ ◦ φ−1
α , and the latter is smooth by the

definition of a manifold.

3. Often it is convenient to define a function by specifying F instead of f .
More precisely, given an atlas {φα}, we define f by specifying functions
Fα : Uα → R and then setting f = Fα ◦ φα. One has to make sure
that the resulting definition is independent of α on chart overlaps. For
example, for S1 using the atlas discussed above, define F1 : (0, 2π)→ R
by θ1 7→ sin(mθ1) and F2 : (−π, π)→ R by θ2 7→ sin(mθ2), where m is
an integer. On the chart overlaps we have F1 ◦ φ1 = F2 ◦ φ2 because θ1

and θ2 differ by a multiple of 2π on both overlaps. Hence this defines
a function on S1.

5 Curves and vectors

Rn, or Minkowski spacetime, has the structure of a vector space, e.g., it
makes sense to add the position vectors of points. One can view more general
vectors, e.g., the 4-velocity of a particle, as vectors in the space itself. This
structure does not extend to more general manifolds, e.g., S2. So we need to
discuss how to define vectors on manifolds.
For a surface in R3, the set of all vectors tangent to the surface at some point
p defines the tangent plane to the surface at p:

This has the structure of a 2d vector space. Note that the tangent planes at
two different points p and q are different. It does not make sense to compare
a vector at p with a vector at q. For example: if one tried to define the sum
of a vector at p and a vector at q then to which tangent plane would the sum
belong?
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On a surface, the tangent vector to a curve in the surface is automatically
tangent to the surface. We take this as our starting point for defining vectors
on a general manifold. We start by defining the notion of a curve in a
manifold, and then the notion of a tangent vector to a curve at a point p.
We then show that the set of all such tangent vectors at p forms a vector
space Tp(M). This is the analogue of the tangent plane to a surface but it
makes no reference to any embedding into a higher-dimensional space.

Definition A smooth curve in a differentiable manifold M is a smooth func-
tion λ : I →M , where I is an open interval in R (e.g. (0, 1) or (−1,∞)). In
other words, φα ◦ λ is a smooth map from I to Rn for all charts φα.

Let f : M → R and λ : I → M be a smooth function and a smooth curve
respectively. Then f◦λ is a map from I to R. Hence we can take its derivative
to obtain the rate of change of f along the curve:

d

dt
[(f ◦ λ)(t)] =

d

dt
[f(λ(t))] (22)

In Rn we are used to the idea that the rate of change of f along the curve
at a point p is given by the directional derivative Xp · (∇f)p where Xp is the
tangent to the curve at p. Note that the vector Xp defines a linear map from
the space of smooth functions on Rn to R: f 7→ Xp · (∇f)p. This is how we
define a tangent vector to a curve in a general manifold:

Definition. Let λ : I → M be a smooth curve with (wlog) λ(0) = p.
The tangent vector to λ at p is the linear map Xp from the space of smooth
functions on M to R defined by

Xp(f) =

{
d

dt
[f(λ(t))]

}
t=0

(23)

Note that this satisfies two important properties: (i) it is linear, i.e., Xp(f +
g) = Xp(f)+Xp(g) and Xp(αf) = αXp(f) for any constant α; (ii) it satisfies
the Leibniz rule Xp(fg) = Xp(f)g(p)+f(p)Xp(g), where f and g are smooth
functions and fg is their product.
If φ = (x1, x2, . . . xn) is a chart defined in a neighbourhood of p and F ≡
f ◦ φ−1 then we have f ◦ λ = f ◦ φ−1 ◦ φ ◦ λ = F ◦ φ ◦ λ and hence

Xp(f) =

(
∂F (x)

∂xµ

)
φ(p)

(
dxµ(λ(t))

dt

)
t=0

(24)
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Note that (i) the first term on the RHS depends only on f and φ, and the
second term on the RHS depends only on φ and λ; (ii) we are using the
Einstein summation convention, i.e., µ is summed from 1 to n in the above
expression.

Proposition. The set of all tangent vectors at p forms a n-dimensional
vector space, the tangent space Tp(M).
Proof. Consider curves λ and κ through p, wlog λ(0) = κ(0) = p. Let their
tangent vectors at p be Xp and Yp respectively. We need to define addition of
tangent vectors and multiplication by a constant. let α and β be constants.
We define αXp + βYp to be the linear map f 7→ αXp(f) + βYp(f). Next we
need to show that this linear map is indeed the tangent vector to a curve
through p. Let φ = (x1, . . . , xn) be a chart defined in a neighbourhood of p.
Consider the following curve:

ν(t) = φ−1 [α(φ(λ(t))− φ(p)) + β(φ(κ(t))− φ(p)) + φ(p)] (25)

Note that ν(0) = p. Let Zp denote the tangent vector to this curve at p.
From equation (24) we have

Zp(f) =

(
∂F (x)

∂xµ

)
φ(p)

{
d

dt
[α(xµ(λ(t))− xµ(p)) + β(xµ(κ(t))− xµ(p)) + xµ(p)]

}
t=0

=

(
∂F (x)

∂xµ

)
φ(p)

[
α

(
dxµ(λ(t))

dt

)
t=0

+ β

(
dxµ(κ(t))

dt

)
t=0

]
= αXp(f) + βYp(f)

= (αXp + βYp)(f).

Since this is true for any smooth function f , we have Zp = αXp + βYp as
required. Hence αXp +βYp is tangent to the curve ν at p. It follows that the
set of tangent vectors at p forms a vector space (the zero vector is realized
by the curve λ(t) = p for all t).
The next step is to show that this vector space is n-dimensional. To do this,
we exhibit a basis. Let 1 ≤ µ ≤ n. Consider the curve λµ through p defined
by

λµ(t) = φ−1(x1(p), . . . , xµ−1(p), xµ(p) + t, xµ+1(p), . . . , xn(p)). (26)

The tangent vector to this curve at p is denoted
(

∂
∂xµ

)
p
. To see why, note

that, using equation (24)(
∂

∂xµ

)
p

(f) =

(
∂F

∂xµ

)
φ(p)

. (27)
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The n tangent vectors
(

∂
∂xµ

)
p

are linearly independent. To see why, assume

that there exist constants αµ such that αµ
(

∂
∂xµ

)
p

= 0. Then, for any function

f we must have

αµ
(
∂F (x)

∂xµ

)
φ(p)

= 0. (28)

Choosing f = xν , this reduces to αν = 0. Letting this run over all values
of ν we see that all of the constants αν must vanish, which proves linear
independence.
Finally we must prove that these tangent vectors span the vector space. This
follows from equation (24), which can be rewritten

Xp(f) =

(
dxµ(λ(t))

dt

)
t=0

(
∂

∂xµ

)
p

(f) (29)

this is true for any f hence

Xp =

(
dxµ(λ(t))

dt

)
t=0

(
∂

∂xµ

)
p

, (30)

i.e. Xp can be written as a linear combination of the n tangent vectors
(

∂
∂xµ

)
p
.

These n vectors therefore form a basis for Tp(M), which establishes that the
tangent space is n-dimensional. QED.

Remark. The basis {
(

∂
∂xµ

)
p
, µ = 1, . . . n} is chart-dependent: we had to

choose a chart φ defined in a neighbourhood of p to define it. Choosing a
different chart would give a different basis for Tp(M). A basis defined this
way is sometimes called a coordinate basis.

Definition. Let {eµ, µ = 1 . . . n} be a basis for Tp(M) (not necessarily a
coordinate basis). We can expand any vector X ∈ Tp(M) as X = Xµeµ. We
call the numbers Xµ the components of X with respect to this basis.

Example. Using the coordinate basis eµ = (∂/∂xµ)p, equation (30) shows
that the tangent vector Xp to a curve λ(t) at p (where t = 0) has components

Xµ
p =

(
dxµ(λ(t))

dt

)
t=0

. (31)

Remark. Note the placement of indices. We shall sum over repeated indices
if one such index appears ”upstairs” (as a superscript, e.g., Xµ) and the other
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”downstairs” (as a subscript, e.g., eµ). (The index µ on
(

∂
∂xµ

)
p

is regarded

as downstairs.) If an equation involves the same index more than twice, or
twice but both times upstairs or both times downstairs (e.g. XµYµ) then a
mistake has been made.

let’s consider the relationship between different coordinate bases. Let φ =
(x1, . . . , xn) and φ′ = (x′1, . . . , x′n) be two charts defined in a neighbourhood
of p. Then, for any smooth function f , we have(

∂

∂xµ

)
p

(f) =

(
∂

∂xµ
(f ◦ φ−1)

)
φ(p)

=

(
∂

∂xµ
[(f ◦ φ′−1

) ◦ (φ′ ◦ φ−1)]

)
φ(p)

Now let F ′ = f ◦ φ′−1. This is a function of the coordinates x′. Note that
the components of φ′ ◦ φ−1 are simply the functions x′µ(x), i.e., the primed
coordinates expressed in terms of the unprimed coordinates. Hence what we
have is easy to evaluate using the chain rule:(

∂

∂xµ

)
p

(f) =

(
∂

∂xµ
(F ′(x′(x)))

)
φ(p)

=

(
∂x′ν

∂xµ

)
φ(p)

(
∂F ′(x′)

∂x′ν

)
φ′(p)

=

(
∂x′ν

∂xµ

)
φ(p)

(
∂

∂x′ν

)
p

(f)

Hence we have (
∂

∂xµ

)
p

=

(
∂x′ν

∂xµ

)
φ(p)

(
∂

∂x′ν

)
p

(32)

This expresses one set of basis vectors in terms of the other. Let Xµ and X ′µ

denote the components of a vector with respect to the two bases. Then we
have

X = Xν

(
∂

∂xν

)
p

= Xν

(
∂x′µ

∂xν

)
φ(p)

(
∂

∂x′µ

)
p

(33)

and hence

X ′
µ

= Xν

(
∂x′µ

∂xν

)
φ(p)

(34)
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Elementary treatments of GR usually define a vector to be a set of numbers
{Xµ} that transforms according to this rule under a change of coordinates.
More precisely, they usually call this a ”contravariant vector”.

6 Covectors

Recall the following from linear algebra:

Definition. Let V be a real vector space. The dual space V ∗ of V is the
vector space of linear maps from V to R.

Lemma. If V is n-dimensional then so is V ∗. If {eµ, µ = 1, . . . , n} is a
basis for V then V ∗ has a basis {fµ, µ = 1, . . . , n}, the dual basis defined by
fµ(eν) = δµν (if X = Xµeµ then fµ(X) = Xνfµ(eν) = Xµ).

Since V and V ∗ have the same dimension, they are isomorphic. For example
the linear map defined by eµ 7→ fµ is an isomorphism. But this is basis-
dependent: a different choice of basis would give a different isomorphism. In
contrast, there is a natural (basis-independent) isomorphism between V and
(V ∗)∗:

Theorem. If V is finite dimensional then (V ∗)∗ is naturally isomorphic to V .
The isomorphism is Φ : V → (V ∗)∗ where Φ(X)(ω) = ω(X) for all ω ∈ V ∗.

Now we return to manifolds:

Definition. The dual space of Tp(M) is denoted T ∗p (M) and called the
cotangent space at p. An element of this space is called a covector (or 1-
form) at p. If {eµ} is a basis for Tp(M) and {fµ} is the dual basis then we
can expand a covector η as ηµf

µ. ηµ are called the components of η.

Note that (i) η(eµ) = ηνf
ν(eµ) = ηµ; (ii) if X ∈ Tp(M) then η(X) =

η(Xµeµ) = Xµη(eµ) = Xµηµ (note the placement of indices!)

Definition. Let f : M → R be a smooth function. Define a covector (df)p
by (df)p(X) = X(f) for any vector X ∈ Tp(M). (df)p is the gradient of f at
p.

Examples.

1. Let (x1, . . . , xn) be a coordinate chart defined in a neighbourhood of p,
recall that xµ is a smooth function (in this neighbourhood) so we can
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take f = xµ in the above definition to define n covectors (dxµ)p. Note
that

(dxµ)p

((
∂

∂xν

)
p

)
=

(
∂xµ

∂xν

)
p

= δµν (35)

Hence {(dxµ)p} is the dual basis of {(∂/∂xµ)p}.

2. To explain why we call (df)p the gradient of f at p, observe that (using
(27))

(df)p = (df)p

((
∂

∂xµ

)
p

)
(dxµ)p =

(
∂F

∂xµ

)
φ(p)

(dxµ)p. (36)

Hence, in a coordinate basis, (df)p has components (∂F/∂xµ)φ(p).

Exercise. Consider two different charts φ = (x1, . . . , xn) and φ′ = (x′1, . . . , x′n)
defined in a neighbourhood of p. Show that

(dxµ)p =

(
∂xµ

∂x′ν

)
φ′(p)

(dx′
ν
)p, (37)

and hence that, if ωµ and ω′µ are the components of ω ∈ T ∗p (M) w.r.t. the
two coordinate bases, then

ω′µ =

(
∂xν

∂x′µ

)
φ′(p)

ων . (38)

Elementary treatements of GR take this as the definition of a covector, which
they usually call a ”covariant vector”.

7 Abstract index notation

So far, we have used Greek letters µ, ν, . . . to denote components of vectors
or covectors with respect to a basis. Equations involving such indices are
assumed to hold only in that basis. For example an equation of the form
Xµ = δµ1 says that, in a particular basis, a vector X has only a single non-
vanishing component. This will not be true in other bases. Furthermore, if
we were just presented with this equation, we would not even know whether
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or not the quantities {Xµ} are the components of a vector or just a set of n
numbers.
The abstract index notation uses Latin letters a, b, c, . . .. A vector X is
denoted Xa or Xb or Xc etc. The letter used in the superscript does not
matter. What matters is that there is a superscript Latin letter. This tells
us that the object in question is a vector. We emphasize: Xa represents the
vector itself, not a component of the vector. Similarly we denote a covector
η by ηa (or ηb etc).
If we have an equation involving abstract indices then we can obtain an
equation valid in any particular basis simply by replacing the abstract indices
by basis indices (e.g. a→ µ, b→ ν etc.). For example, consider the quantity
ηaX

a in the abstract index notation. We see that this involves a covector
ηa and a vector Xa. Furthermore, in any basis, this quantity is equal to
ηµX

µ = η(X). Hence ηaX
a is the abstract index way of writing η(X).

Similarly, if f is a smooth function then X(f) = Xa(df)a.
Conversely, if one has an equation involving Greek indices but one knows
that it is true for an arbitrary basis then one can replace the Greek indices
with Latin letters.
Latin indices must respect the rules of the summation convention so equations
of the form ηaηa = 1 or ηb = 2 do not make sense.

8 Tensors

In Newtonian physics, you are familiar with the idea that certain physical
quantities are described by tensors (e.g. the inertia tensor). You may have
encountered the idea that the Maxwell field in special relativity is described
by a tensor. Tensors are very important in GR because the curvature of
spacetime is described with tensors. In this section we shall define tensors at
a point p and explain some of their basic properties.

Definition. A tensor of type (r, s) at p is a multilinear map

T : T ∗p (M)× . . .× T ∗p (M)× Tp(M)× . . .× Tp(M)→ R. (39)

where there are r factors of T ∗p (M) and s factors of Tp(M). (Multilinear
means that the map is linear in each argument.)

In other words, given r covectors and s vectors, a tensor of type (r, s) pro-
duces a real number.
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Examples.

1. A tensor of type (0, 1) is a linear map Tp(M)→ R, i.e., it is a covector.

2. A tensor of type (1, 0) is a linear map T ∗p (M)→ R, i.e., it is an element
of (T ∗p (M))∗ but this is naturally isomorphic to Tp(M) hence a tensor of
type (1, 0) is a vector. To see how this works, given a vector X ∈ Tp(M)
we define a linear map T ∗p (M)→ R by η 7→ η(X) for any η ∈ T ∗p (M).

3. We can define a (1, 1) tensor δ by δ(ω,X) = ω(X) for any covector ω
and vector X.

Definition. Let T be a tensor of type (r, s) at p. If {eµ} is a basis for Tp(M)
with dual basis {fµ} then the components of T in this basis are the numbers

T µ1µ2...µrν1ν2...νs = T (fµ1 , fµ2 , . . . , fµr , eν1 , eν2 , . . . , eνs) (40)

In the abstract index notation, we denote T by T a1a2...ar b1b2...bs .

Remark. Tensors of type (r, s) at p can be added together and multiplied
by a constant, hence they form a vector space. Since such a tensor has nr+s

components, it is clear that this vector space has dimension nr+s.

Examples.

1. Consider the tensor δ defined above. Its components are

δµν = δ(fµ, eν) = fµ(eν) = δµν , (41)

where the RHS is a Kronecker delta. This is true in any basis, so in
the abstract index notation we write δ as δab .

2. Consider a (2, 1) tensor. Let η and ω be covectors and X a vector.
Then in our basis we have

T (η, ω,X) = T (ηµf
µ, ωνf

ν , Xρeρ) = ηµωνX
ρT (fµ, f ν , eρ) = T µνρηµωνX

ρ

(42)
Now the basis we chose was arbitrary, hence we can immediately con-
vert this to a basis-independent equation using the abstract index no-
tation:

T (η, ω,X) = T abcηaωbX
c. (43)

This formula generalizes in the obvious way to a (r, s) tensor.
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We have discussed the transformation of vectors and covectors components
under a change of coordinate basis. Let’s now examine how tensor compo-
nents transform under an arbitrary change of basis. Let {eµ} and {e′µ} be two
bases for Tp(M). Let {fµ} and {f ′µ} denote the corresponding dual bases.
Expanding the primed bases in terms of the unprimed bases gives

f ′
µ

= Aµνf
ν , e′µ = Bν

µeν (44)

for some matrices Aµν and Bν
µ. These matrices are related because:

δµν = f ′
µ
(e′ν) = Aµρf

ρ(Bσ
νeσ) = AµρB

σ
νf

ρ(eσ) = AµρB
σ
νδ
ρ
σ = AµρB

ρ
ν .
(45)

Hence Bµ
ν = (A−1)µν . For a change between coordinate bases, our previous

results give

Aµν =

(
∂x′µ

∂xν

)
, Bµ

ν =

(
∂xµ

∂x′ν

)
(46)

and these matrices are indeed inverses of each other (from the chain rule).

Exercise. Show that under an arbitrary change of basis, the components of
a vector X and a covector η transform as

X ′
µ

= AµνX
ν , η′µ = (A−1)νµην . (47)

Show that the components of a (2, 1) tensor T transform as

T ′
µν
ρ = AµσA

ν
τ (A

−1)λρT
στ
λ. (48)

The corresponding result for a (r, s) tensor is an obvious generalization of
this formula.

Given a (r, s) tensor, we can construct a (r− 1, s− 1) tensor by contraction.
This is easiest to demonstrate with an example.

Example. Let T be a tensor of type (3, 2). Define a new tensor S of type
(2, 1) as follows

S(ω, η,X) = T (fµ, ω, η, eµ, X) (49)

where {eµ} is a basis and {fµ} is the dual basis, ω and η are arbitrary
covectors and X is an arbitrary vector. This definition is basis-independent
because

T (f ′
µ
, ω, η, e′µ, X) = T (Aµνf

ν , ω, η, (A−1)ρµeρ, X)

= (A−1)ρµA
µ
νT (f ν , ω, η, eρ, X)

= T (fµ, ω, η, eµ, X).
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The components of S and T are related by Sµνρ = T σµνσρ in any basis. Since
this is true in any basis, we can write it using the abstract index notation as

Sabc = T dabdc (50)

Note that there are other (2, 1) tensors that we can build from T abcde. For
example, there is T abdcd, which corresponds to replacing the RHS of (49) with
T (ω, η, fµ, X, eµ). The abstract index notation makes it clear how many
different tensors can be defined this way: we can define a new tensor by
”contracting” any upstairs index with any downstairs index.

Another important way of constructing new tensors is by taking the product
of two tensors:

Definition. If S is a tensor of type (p, q) and T is a tensor of type (r, s) then
the outer product of S and T , denoted S⊗ T is a tensor of type (p+ r, q+ s)
defined by

(S ⊗ T )(ω1, . . . , ωp, η1, . . . , ηr, X1, . . . , Xq, Y1, . . . , Ys)

= S(ω1, . . . , ωp, X1, . . . , Xq)T (η1, . . . , ηr, Y1, . . . , Ys) (51)

where ω1, . . . , ωp and η1, . . . , ηr are arbitrary covectors and X1, . . . , Xq and
Y1, . . . , Ys are arbitrary vectors.

Exercise. Show that this definition is equivalent to

(S ⊗ T )a1...apb1...br c1...cqd1...ds = Sa1...apc1...cqT
b1...br

d1...ds (52)

Exercise. Show that, in a coordinate basis, any (2, 1) tensor T at p can be
written as

T = T µνρ

(
∂

∂xµ

)
p

⊗
(

∂

∂xν

)
p

⊗ (dxρ)p (53)

This generalizes in the obvious way to a (r, s) tensor.

Remark. You may be wondering why we write T abc instead of T abc . At
the moment there is no reason why we should not adopt the latter notation.
However, it is convenient to generalize our definition of tensors slightly. We
have defined a (r, s) tensor to be a linear map with r+s arguments, where the
first r arguments are covectors and the final s arguments are vectors. We can
generalize this by allowing the covectors and vectors to appear in any order.
For example, consider a (1, 1) tensor. This is a map T ∗p (M) × Tp(M) → R.
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But we could just as well have defined it to be a map Tp(M) × T ∗p (M) →
R. The abstract index notation allows us to distinguish these possibilities
easily: the first would be written as T ab and the second as Ta

b. (2, 1) tensors
come in 3 different types: T abc, T

a
b
c and Ta

bc. Each type of of (r, s) tensor
gives a vector space of dimension nr+s but these vector spaces are naturally
isomorphic so often one does not bother to distinguish between them.
There is a final type of tensor operation that we shall need: symmetrization
and antisymmetrization. Consider a (0, 2) tensor T . We can define two other
(0, 2) tensors S and A as follows:

S(X, Y ) =
1

2
(T (X, Y ) + T (Y,X)), A(X, Y ) =

1

2
(T (X, Y )− T (Y,X)), (54)

where X and Y are vectors at p. In abstract index notation:

Sab =
1

2
(Tab + Tba), Aab =

1

2
(Tab − Tba). (55)

In a basis, we can regard the components of T as a square matrix. The
components of S and A are just the symmetric and antisymmetric parts
of this matrix. It is convenient to introduce some notation to describe the
operations we have just defined: we write

T(ab) =
1

2
(Tab + Tba), T[ab] =

1

2
(Tab − Tba). (56)

These operations can be applied to more general tensors. For example,

T (ab)c
d =

1

2
(T abcd + T bacd). (57)

We can also symmetrize or antisymmetrize on more than 2 indices. To sym-
metrize on n indices, we sum over all permutations of these indices and divide
the result by n! (the number of permutations). To antisymmetrize we do the
same but we weight each term in the sum by the sign of the permutation.
The indices that we symmetrize over must be either upstairs or downstairs,
they cannot be a mixture. For example,

T (abc)d =
1

3!

(
T abcd + T bcad + T cabd + T bacd + T cbad + T acbd

)
. (58)

T a[bcd] =
1

3!
(T abcd + T acdb + T adbc − T acbd − T adcb − T abdc) . (59)
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Sometimes we might wish to (anti)symmetrize over indices which are not
adjacent. In this case, we use vertical bars to denote indices excluded from
the (anti)symmetrization. For example,

T(a|bc|d) =
1

2
(Tabcd + Tdbca) . (60)

Exercise. Show that T (ab)X[a|cd|b] = 0.

9 Tensor fields

So far, we have defined vectors, covectors and tensors at a single point p.
However, in physics we shall need to consider how these objects vary in
spacetime. This leads us to define vector, covector and tensor fields.

Definition. A vector field is a map X which maps any point p ∈ M to a
vector Xp at p. Given a vector field X and a function f we can define a new
function X(f) : M → R by X(f) : p 7→ Xp(f). The vector field X is smooth
if this map is a smooth function for any smooth f .

Example. Given any coordinate chart φ = (x1, . . . , xn), the vector field ∂
∂xµ

is defined by p 7→
(

∂
∂xµ

)
p
. Hence(
∂

∂xµ

)
(f) : p 7→

(
∂F

∂xµ

)
φ(p)

, (61)

where F ≡ f ◦ φ−1. You should convince yourself that smoothness of f
implies that the above map defines a smooth function. Therefore ∂/∂xµ is
a smooth vector field. (Note that (∂/∂xµ) usually won’t be defined on the
whole manifold M since the chart φ might not cover the whole manifold. So
strictly speaking this is not a vector field on M but only on a subset of M .
We shan’t worry too much about this distinction.)

Remark. Since the vector fields (∂/∂xµ)p provide a basis for Tp(M) at any
point p, we can expand an arbitrary vector field as

X = Xµ

(
∂

∂xµ

)
(62)

Since ∂/∂xµ is smooth, it follows that X is smooth if, and only if, its com-
ponents Xµ are smooth functions.
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Definition. A covector field is a map ω which maps any point p ∈ M to a
covector ωp at p. Given a covector field and a vector field X we can define
a function ω(X) : M → R by ω(X) : p 7→ ωp(Xp). The covector field ω is
smooth if this function is smooth for any smooth vector field X.

Example. Let f be a smooth function. We have defined (df)p above. Now
we simply let p vary to define a covector field df . Let X be a smooth vector
field and f a smooth function. Then df(X) = X(f). This is a smooth
function of p (because X is smooth). Hence df is a smooth covector field:
the gradient of f .

Remark. Taking f = xµ reveals that dxµ is a smooth covector field.

Definition. A (r, s) tensor field is a map T which maps any point p ∈M to
a (r, s) tensor Tp at p. Given r covector fields η1, . . . , ηr and s vector fields
X1, . . . , Xs we can define a function T (η1, . . . , ηr, X1, . . . , Xs) : M → R by
p 7→ Tp((η1)p, . . . , (ηr)p, (X1)p, . . . , (Xs)p). The tensor field T is smooth if this
function is smooth for any smooth covector fields η1, . . . , ηr and vector fields
X1, . . . , Xr.

Exercise. Show that a tensor field is smooth if, and only if, its components
in a coordinate chart are smooth functions.

Remark. Henceforth we shall assume that all tensor fields that we encounter
are smooth.

10 The commutator

LetX and Y be vector fields and f a smooth function. Since Y (f) is a smooth
function, we can act on it with X to form a new smooth function X(Y (f)).
Does the map f 7→ X(Y (f)) define a vector field? No, because X(Y (fg)) =
X(fY (g) + gY (f)) = fX(Y (g)) + gX(Y (f)) +X(f)Y (g) +X(g)Y (f) so the
Leibniz law is not satisfied. However, we can also define Y (X(f)) and the
combination X(Y (f))− Y (X(f)) does obey the Leibniz law (check!).

Definition. The commutator of two vector fields X and Y is the vector field
[X, Y ] defined by

[X, Y ](f) = X(Y (f))− Y (X(f)) (63)

for any smooth function f .

26



To see that this does indeed define a vector field, we can evaluate it in a
coordinate chart:

[X, Y ](f) = X

(
Y ν ∂F

∂xν

)
− Y

(
Xµ ∂F

∂xµ

)
= Xµ ∂

∂xµ

(
Y ν ∂F

∂xν

)
− Y ν ∂

∂xν

(
Xµ ∂F

∂xµ

)
= Xµ∂Y

ν

∂xµ
∂F

∂xν
− Y ν ∂X

µ

∂xν
∂F

∂xµ

=

(
Xν ∂Y

µ

∂xν
− Y ν ∂X

µ

∂xν

)
∂F

∂xµ

= [X, Y ]µ
(

∂

∂xµ

)
(f)

where

[X, Y ]µ =

(
Xν ∂Y

µ

∂xν
− Y ν ∂X

µ

∂xν

)
. (64)

Since f is arbitrary, it follows that

[X, Y ] = [X, Y ]µ
(

∂

∂xµ

)
. (65)

The RHS is a vector field hence [X, Y ] is a vector field whose components in
a coordinate basis are given by (64). (Note that we cannot write equation
(64) in abstract index notation because it is valid only in a coordinate basis.)

Example. Let X = ∂/∂x1 and Y = x1∂/∂x2 + ∂/∂x3. The components of
X are constant so [X, Y ]µ = ∂Y µ/∂x1 = δµ2 so [X, Y ] = ∂/∂x2.

Exercise. Show that (i) [X, Y ] = −[Y,X]; (ii) [X, Y +Z] = [X, Y ] + [X,Z];
(iii) [X, fY ] = f [X, Y ] + X(f)Y ; (iv) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] =
0 (the Jacobi identity). Here X, Y, Z are vector fields and f is a smooth
function.

Remark. The components of (∂/∂xµ) in the coordinate basis are either 1
or 0. It follows that [

∂

∂xµ
,
∂

∂xν

]
= 0. (66)

Conversely, it can be shown that if X1, . . . , Xm (m ≤ n) are vector fields
that are linearly independent at every point, and whose commutators all

27



vanish, then, in a neighbourhood of any point p, one can introduce a coordi-
nate chart (x1, . . . xn) such that Xi = ∂/∂xi (i = 1, . . . ,m) throughout this
neighbourhood.

11 Integral curves

In fluid mechanics, the velocity of a fluid is described by a vector field u(x) in
R3 (we are returning to Cartesian vector notation for a moment). Consider
a particle suspended in the fluid with initial position x0. It moves with the
fluid so its position x(t) satisfies

dx

dt
= u(x(t)), x(0) = x0. (67)

The solution of this differential equation is called the integral curve of the
vector field u through x0. The definition extends straightforwardly to a
vector field on a general manifold:

Definition. Let X be a vector field on M and p ∈ M . An integral curve of
X through p is a curve through p whose tangent at every point is X.

Let λ denote an integral curve of X with (wlog) λ(0) = p. In a coordinate
chart, this definition reduces to the initial value problem

dxµ(t)

dt
= Xµ(x(t)), xµ(0) = xµp . (68)

(Here we are using the abbreviation xµ(t) = xµ(λ(t)).) Standard ODE theory
guarantees that there exists a unique solution to this problem. Hence there
is a unique integral curve of X through any point p.

Example. In a chart φ = (x1, . . . , xn), consider X = ∂/∂x1 + x1∂/∂x2

and take p to be the point with coordinates (0, . . . , 0). Then dx1/dt = 1,
dx2/dt = x1. Solving the first equation and imposing the initial condition
gives x1 = t, then plugging into the second equation and solving gives x2 =
t2/2. The other coords are trivial: xµ = 0 for µ > 2, so the integral curve is
t 7→ φ−1(t, t2/2, . . . , 0).

12 Metrics

A metric captures the notion of distance on a manifold. We can motivate the
required definition by considering the case of R3. Let x(t), a < t < b be a
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curve in R3 (we’re using Cartesian vector notation). Then the length of the
curve is ∫ b

a

dt

√
dx

dt
· dx
dt
. (69)

Inside the integral we see the norm of the tangent vector dx/dt, in other
words the scalar product of this vector with itself. Therefore to define a
notion of distance on a general manifold, we shall start by introducing a
scalar product between vectors.
A scalar product maps a pair of vectors to a number. In other words, at a
point p, it is a map g : Tp(M) × Tp(M) → R. A scalar product should be
linear in each argument. Hence g is a (0, 2) tensor at p. We call g a metric
tensor. There are a couple of other properties that g should also satisfy:

Definition. A metric tensor at p ∈M is a (0, 2) tensor g with the following
properties:

1. It is symmetric: g(X, Y ) = g(Y,X) for allX, Y ∈ Tp(M) (i.e. gab = gba)

2. It is non-degenerate: g(X, Y ) = 0 for all Y ∈ Tp(M) if, and only if,
X = 0.

Remark. Sometimes we shall denote g(X, Y ) by 〈X, Y 〉 or X · Y .

Since the components of g form a symmetric matrix, one can introduce a
basis that diagonalizes g. Non-degeneracy implies that none of the diagonal
elements is zero. By rescaling the basis vectors, one can arrange that the
diagonal elements are all ±1. In this case, the basis is said to be orthonormal.
There are many such bases but a standard algebraic theorem (Sylvester’s
law of inertia) states that the number of positive and negative elements is
independent of the choice of orthonormal basis. The number of positive and
negative elements is called the signature of the metric.
In differential geometry, one is usually interested in Riemannian metrics, i.e.,
those with signature + + + . . .+, and hence g is positive definite. In GR, we
are interested in Lorentzian metrics, i.e., those with signature − + + . . .+.
We want g to be defined over the whole manifold, so we assume it to be a
tensor field.

Definition. A Riemannian (Lorentzian) manifold is a pair (M, g) where M
is a differentiable manifold and g is a Riemannian (Lorentzian) metric tensor
field. A Lorentzian manifold is sometimes called a spacetime.
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Remark. On a Riemannian manifold, we can now define the length of a
curve in exactly the same way as above: let λ : (a, b) → M be a smooth
curve with tangent vector X. Then the length of the curve is∫ b

a

dt
√
g(X,X)|λ(t) (70)

Exercise. Given a curve λ(t) we can define a new curve simply by changing

the parametrization: let t = t(u) with dt/du > 0 and u ∈ (c, d) with t(c) = a
and t(d) = b. Show that: (i) the new curve κ(u) ≡ λ(t(u)) has tangent
vector Y a = (dt/du)Xa; (ii) the length of these two curves is the same, i.e.,
our definition of length is independent of parametrization.

In a coordinate basis, we have (cf equation (53))

g = gµνdx
µ ⊗ dxν (71)

Often we use the notation ds2 instead of g and abbreviate this to

ds2 = gµνdx
µdxν (72)

This notation captures the intuitive idea of an infinitesimal distance ds being
determined by infinitesimal coordinate separations dxµ.

Examples.

1. In Rn = {(x1, . . . , xn)}, the Euclidean metric is

g = dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn (73)

(Rn, g) is callled Euclidean space. A coordinate chart which covers all
of R4 and which the components of the metric are diag(1, 1, . . . , 1) is
called Cartesian.

2. In R4 = {(x0, x1, x2, x3)}, the Minkowski metric is

g = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2. (74)

(R4, g) is called Minkowski spacetime. A coordinate chart which cov-
ers all of R4 and in which the components of the metric are ηµν ≡
diag(−1, 1, 1, 1) everywhere is called an inertial frame.
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3. On S2, let (θ, φ) denote the spherical polar coordinate chart discussed
earlier. The (unit) round metric on S2 is

ds2 = dθ2 + sin2 θ dφ2, (75)

i.e. in the chart (θ, φ), we have gµν = diag(1, sin2 θ). Note this is
positive definite for θ ∈ (0, π), i.e., on all of this chart. However,
this chart does not cover the whole manifold so the above equation
does not determine g everywhere. We can give a precise definition by
adding that, in the chart (θ′, φ′) discussed earlier, g = dθ′2 +sin2 θ′dφ′2.
One can check that this does indeed define a smooth tensor field. (This
metric is the one induced from the embedding of S2 into 3d Euclidean
space: it is the ”pull-back” of the metric on Euclidean space - see later
for the definition of pull-back.)

Definition. Since gab is non-degenerate, it must be invertible. The inverse
metric is a symmetric (2, 0) tensor field denoted gab and obeys

gabgbc = δac (76)

Example. For the metric on S2 defined above, in the chart (θ, φ) we have
gµν = diag(1, 1/ sin2 θ).

Definition. A metric determines a natural isomorphism between vectors
and covectors. Given a vector Xa we can define a covector Xa = gabX

b.
Given a covector ηa we can define a vector ηa = gabηb. These maps are
clearly inverses of each other.

Remark. This isomorphism is the reason why covectors are not more famil-
iar: we are used to working in Euclidean space using Cartesian coordinates,
for which gµν and gµν are both the identity matrix, so the isomorphism ap-
pears trivial.

Definition. For a general tensor, abstract indices will be ”lowered” by con-
tracting with gab and ”raised” by contracting with gab. Raising and lowering
preserve the ordering of indices. The resulting tensor will be denoted by the
same letter as the original tensor.

Example. Let T be a (3, 2) tensor. Then T ab
cde = gbfg

dhgejT afchj.
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13 Lorentzian signature

Remark. On a Lorentzian manifold, we take basis indices µ, ν, . . . to run
from 0 to n− 1.

At any point p of a Lorentzian manifold, we can choose an orthonormal basis
{eµ} so that g(eµ, eν) = ηµν ≡ diag(−1, 1, . . . , 1). Such a basis is far from
unique. If e′µ = (A−1)νµeν is any other such basis then we have

ηµν = g(e′µ, e
′
ν) = (A−1)ρµ(A−1)σνg(eρ, eσ) = (A−1)ρµ(A−1)σνηρσ. (77)

Hence
ηµνA

µ
ρA

ν
σ = ηρσ. (78)

These are the defining equations of a Lorentz transformation in special rela-
tivity. Hence different orthonormal bases at p are related by Lorentz trans-
formations. We saw earlier that the components of a vector at p transform as
X ′µ = AµνX

ν . We are starting to recover the structure of special relativity
locally, as required by the Equivalence Principle.

Definition. On a Lorentzian manifold (M, g), a non-zero vector X ∈ Tp(M)
is timelike if g(X,X) < 0, null (or lightlike) if g(X,X) = 0, and spacelike if
g(X,X) > 0.

Remark. In an orthonormal basis at p, the metric has components ηµν so the
tangent space at p has exactly the same structure as Minkowski spacetime,
i.e., null vectors at p define a light cone that separates timelike vectors at p
from spacelike vectors at p:

Exercise. Let Xa, Y b be non-zero vectors at p that are orthogonal, i.e.,
gabX

aY b = 0. Show that (i) if Xa is timelike then Y a is spacelike; (ii) if Xa

is null then Y a is spacelike or null; (iii) if Xa is spacelike then Y a can be
spacelike, timelike, or null. (Hint. Choose an orthonormal basis to make the
components of Xa as simple as possible.)
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Definition. On a Riemannian manifold, the norm of a vector X is |X| =√
g(X,X) and the angle between two non-zero vectors X and Y (at the same

point) is θ where cos θ = g(X, Y )/(|X| |Y |). The same definitions apply to
spacelike vectors on a Lorentzian manifold.

Definition. A curve in a Lorentzian manifold is said to be timelike if its
tangent vector is everywhere timelike. Null and spacelike curves are defined
similarly. (Most curves do not satisfy any of these definitions because e.g. the
tangent vector can change from timelike to null to spacelike along a curve.)

Remark. The length of a spacelike curve can be defined in exactly the same
way as on a Riemannian manifold (equation (70)). What about a timelike
curve?

Definition. let λ(u) be a timelike curve with λ(0) = p. Let Xa be the
tangent to the curve. The proper time τ from p along the curve is defined by

dτ

du
=
√
− (gabXaXb)λ(u), τ(0) = 0. (79)

Remark. In a coordinate chart, Xµ = dxµ/du so this definition can be

rewritten in the form
dτ 2 = −gµνdxµdxν , (80)

with the understanding that this is to be evaluated along the curve. Inte-
grating the above equation along the curve gives the proper time from p to
some other point q = λ(uq) as

τ =

∫ uq

0

du

√
−
(
gµν

dxµ

du

dxν

du

)
λ(u)

(81)

Definition. If proper time τ is used to parametrize a timelike curve then
the tangent to the curve is called the 4-velocity of the curve. In a coordinate
basis, it has components uµ = dxµ/dτ .

Remark. (80) implies that 4-velocity is a unit timelike vector:

gabu
aub = −1. (82)
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14 Geodesics

Consider the following question. Let p and q be points connected by a time-
like curve. A small deformation of a timelike curve remains timelike hence
there exist infinitely many timelike curves connecting p and q. The proper
time between p and q will be different for different curves. Which curve
extremizes the proper time between p and q?
This is a standard Euler-Lagrange problem. Consider timelike curves from p
to q with parameter u such that λ(0) = p, λ(1) = q. Let’s use a dot to denote
a derivative with respect to u. The proper time between p and q along such
a curve is given by the functional

τ [λ] =

∫ 1

0

duG (x(u), ẋ(u)) (83)

where

G (x(u), ẋ(u)) ≡
√
−gµν(x(u))ẋµ(u)ẋν(u) (84)

and we are writing xµ(u) as a shorthand for xµ(λ(u)).
Consider a 1-parameter family of timelike curves λs(u) such that λs(0) = p,
λs(1) = q and λ0 is the curve that extremizes the proper time. The proper
time between p and q along λs is

τ(s) ≡ τ [λs] (85)

Now, since λ0(u) extremizes the proper time, we have

0 =

(
dτ

ds

)
s=0

=

∫ 1

0

du

(
∂G

∂xµ
∂xµs
∂s

+
∂G

∂ẋµ
∂2xµ

∂s∂u

)
s=0

(86)

Interchange the s and u derivatives in the final term and then integrate by
parts:

0 =

[
∂G

∂ẋµ
∂xµ

∂s

]1

0

+

∫ 1

0

(
∂G

∂xµ
− ∂

∂u

(
∂G

∂ẋµ

))
s=0

(
∂xµs
∂s

)
s=0

(87)

The first term vanishes because all of the curves have xµs (0) = xµ(p) and so
∂xµ/∂s vanishes at u = 0 and similarly at u = 1. Now we want the curve
with s = 0 to extremize the proper time for any 1-parameter family. Hence
the integral above must vanish for any choice of (∂xµs/∂s)s=0. It follows that
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the curve with s = 0, i.e., the curve that extremizes the proper time, must
satisfy the Euler-Lagrange equation

d

du

(
∂G

∂ẋµ

)
− ∂G

∂xµ
= 0 (88)

Working out the various terms, we have (using the symmetry of the metric)

∂G

∂ẋµ
= − 1

2G
2gµν ẋ

ν = − 1

G
gµν ẋ

ν (89)

∂G

∂xµ
= − 1

2G
gνρ,µ ẋ

ν ẋρ (90)

where we have relabelled some dummy indices, and introduced the important
notation of a comma to denote partial differentiation:

gνρ,µ ≡
∂

∂xµ
gνρ (91)

We will be using this notation a lot henceforth.
So far, our parameter u has been arbitrary subject to the conditions u(0) = p
and u(1) = q. At this stage, it is convenient to use a more physical parameter,
namely τ , the proper time along the curve. (Note that we could not have
used τ from the outset since the value of τ at q is different for different curves,
which would make the range of integration different for different curves.) The
paramers are related by (

dτ

du

)2

= −gµν ẋµẋν = G2 (92)

and hence dτ/du = G. So in our equations above, we can replace d/du with
Gd/dτ , so the Euler-Lagrange equation becomes (after cancelling a factor of
−G)

d

dτ

(
gµν

dxν

dτ

)
− 1

2
gνρ,µ

dxν

dτ

dxρ

dτ
= 0 (93)

Hence

gµν
d2xν

dτ 2
+ gµν,ρ

dxρ

dτ

dxν

dτ
− 1

2
gνρ,µ

dxν

dτ

dxρ

dτ
= 0 (94)

In the second term, we can replace gµν,ρ with gµ(ν,ρ) because it is contracted
with an object symmetrical on ν and ρ. Finally, contracting the whole ex-
pression with the inverse metric and relabelling indices gives

d2xµ

dτ 2
+ Γµνρ

dxν

dτ

dxρ

dτ
= 0 (95)
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where Γµνρ are known as the Christoffel symbols, and are defined by

Γµνρ =
1

2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) . (96)

Remarks. Γµνρ = Γµρν . The Christoffel symbols are not tensor components.

Neither the first term nor the second term in (95) are components of a vector
but the sum of these two terms does give vector components. More about
this soon.

Example. In Minkowski spacetime, the components of the metric in an
inertial frame are constant so Γµνρ = 0. Hence the above equation reduces
to d2xµ/dτ 2 = 0. This is the equation of motion of a free particle! Hence,
in Minkowski spacetime, the free particle trajectory between two (timelike
separated) points p and q extremizes the proper time between p and q.

This motivates the following postulate of General Relativity:

Postulate. Massive free particles follow curves of extremal proper time, i.e.,
solutions of equation (95).

Definition. Solutions of equation (95) are called geodesics.

Remarks. 1. Massless particles obey a very similar equation which we shall
discuss shortly. 2. In Minkowski spacetime, (timelike) geodesics maximize
the proper time between two points. In a curved spacetime, this is true only
locally.

Exercises

1. Show that the geodesic equation can be obtained more directly as the
Euler-Lagrange equation for the Lagrangian

L = −gµν(x(τ))
dxµ

dτ

dxν

dτ
(97)

This is usually the easiest way to derive the geodesic equation or to
calculate the Christoffel symbols.

2. Note that L has no explicit τ dependence, i.e., ∂L/∂τ = 0. Show that
this implies that the following quantity is conserved along geodesics
(i.e. that is is annihilated by d/dτ):

L− ∂L

∂(dxµ/dτ)

dxµ

dτ
= gµν

dxµ

dτ

dxν

dτ
(98)
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This is a check on the consistency of the geodesic equation because the
definition of τ as proper time implies that the RHS must be −1.

Example. Consider the metric we saw earlier with c = 1:

ds2 = − (1 + 2Φ(x, y, z)) dt2 + (1− 2Φ(x, y, z))
(
dx2 + dy2 + dz2

)
, (99)

where Φ� 1. The Euler-Lagrange equation for t is

d

dτ

[
(1 + 2Φ)

dt

dτ

]
= 0. (100)

Expanding out the derivative and multiplying by (1 + 2Φ)−1 ≈ (1 − 2Φ),
and neglecting terms quadratic in Φ gives (using the notation x1 = x, x2 =
y, x3 = z and employing the summation convention for indices i, j, k)

d2t

dτ 2
+ 2∂iΦ

dt

dτ

dxi

dτ
= 0, (101)

Hence we have
Γ0

0i = Γ0
i0 = ∂iΦ, Γ0

00 = Γ0
ij = 0. (102)

The Euler-Lagrange equation for xi gives

d2xi

dτ 2
+ ∂iΦ

(
dt

dτ

)2

+
(
∂iΦδjk − 2∂(jΦδk)i

) dxj
dτ

dxk

dτ
= 0, (103)

This gives

Γi00 = ∂iΦ, Γi0j = Γij0 = 0, Γijk = ∂iΦδjk − 2∂(jΦδk)i (104)

Now consider a particle that is moving non-relativistically, i.e., with velocity
small compared to the speed of light:(

dx

dτ

)2

+

(
dy

dτ

)2

+

(
dz

dτ

)2

� 1. (105)

From equation (80) it follows that

dt

dτ
≈ 1, (106)
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so we can take t ≈ τ + t0 (for some constant t0) and the Euler-Lagrange
equations for the spatial variables reduce to

d2xi

dt2
= −∂iΦ. (107)

This is the Newtonian equation of motion for a particle in a time-independent
gravitational field. Hence the above spacetime geometry, together with the
assumption that free particles move on geodesics, reproduces the predic-
tions of Newtonian theory for weak, time-independent, gravitational fields
and particles moving non-relativistically. Furthermore, we have automati-
cally recovered the equality of gravitational and inertial mass, i.e., the weak
equivalence principle is explained by the hypothesis that particles move on
geodesics!

Remark. We would have obtained exactly the same result if we had replaced
the term 1−2Φ in the metric by 1−αΦ for any α. Agreement with Newtonian
theory cannot distinguish these possibilities. α = 2 is the value predicted by
GR, and confirmed by precision tests (see later).

15 Covariant derivative

To formulate physical laws, we need to be able to differentiate tensor fields.
For scalar fields, partial differentiation is fine: f,µ ≡ ∂f/∂xµ are the compo-
nents of the covector field (df)a. However, for tensor fields, partial differenti-
ation is no good because the partial derivative of a tensor field does not give
another tensor field:

Exercise. Let V a be a vector field. In any coordinate chart, let T µν =
V µ

,ν ≡ ∂V µ/∂xν . Show that T µν do not transform as tensor components
under a change of chart.

The problem is that differentiation involves comparing a tensor at two in-
finitesimally nearby points of the manifold. But we have seen that this does
not make sense: tensors at different points belong to different spaces. The
mathematical structure that overcomes this difficulty is called a covariant
derivative or connection.

Definition. A covariant derivative ∇ on a manifold M is a map sending ev-
ery pair of smooth vector fields X, Y to a smooth vector field ∇XY , with the
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following properties (where X, Y, Z are vector fields and f, g are functions)

∇fX+gYZ = f∇XZ + g∇YZ, (108)

∇X(Y + Z) = ∇XY +∇XZ, (109)

∇X(fY ) = f∇XY + (∇Xf)Y, (Leibniz rule), (110)

where the action of ∇ on functions is defined by

∇Xf = X(f). (111)

Remark. (108) implies that, at any point, the map ∇Y : X 7→ ∇XY

is a linear map from Tp(M) to itself. Hence it defines a (1, 1) tensor (see
examples sheet 1). More precisely, if η ∈ T ∗p (M) and X ∈ Tp(M) then we
define (∇Y )(η,X) ≡ η(∇XY ).

Definition. let Y be a vector field. The covariant derivative of Y is the
(1, 1) tensor field ∇Y . In abstract index notation we usually write (∇Y )ab
as ∇bY

a or Y a
;b

Remarks.

1. Similarly we define ∇f : X 7→ ∇Xf = X(f). Hence ∇f = df . We can
write this as either ∇af or f;a or ∂af or f,a (i.e. the covariant derivative
reduces to the partial derivative when acting on a function).

2. Does the map ∇ : X, Y 7→ ∇XY define a (1, 2) tensor field? No -
equation (110) shows that this map is not linear in Y .

Example. Pick a coordinate chart on M . Let ∇ be the partial derivative
in this chart. This satisfies all of the above conditions. This is not a very
interesting example of a covariant derivative because it depends on choosing
a particular chart: if we use a different chart then this covariant derivative
will not be the partial derivative in the new chart.

Definition. In a basis {eµ} the connection components Γµνρ are defined by

∇ρeν ≡ ∇eρeν = Γµνρeµ (112)

Example. The Christoffel symbols are the coordinate basis components of
a certain connection, the Levi-Civita connection, which is defined on any
manifold with a metric. More about this soon.
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Write X = Xµeµ and Y = Y µeµ. Now

∇XY = ∇X(Y µeµ) = X(Y µ)eµ + Y µ∇Xeµ (Leibniz)

= Xνeν(Y
µ)eµ + Y µ∇Xνeνeµ

= Xνeν(Y
µ)eµ + Y µXν∇νeµ by (108)

= Xνeν(Y
µ)eµ + Y µXνΓρµνeρ

= Xν
(
eν(Y

µ) + ΓµρνY
ρ
)
eµ (113)

and hence
(∇XY )µ = Xνeν(Y

µ) + ΓµρνY
ρXν (114)

so
Y µ

;ν = eν(Y
µ) + ΓµρνY

ρ (115)

In a coordinate basis, this reduces to

Y µ
;ν = Y µ

,ν + ΓµρνY
ρ (116)

The connection components Γµνρ are not tensor components:

Exercise (examples sheet 2). Consider a change of basis

e′µ = (A−1)νµeν (117)

Show that

Γ′
µ
νρ = Aµτ (A

−1)λν(A
−1)σρΓ

τ
λσ + Aµτ (A

−1)σρeσ((A−1)τ ν) (118)

The presence of the second term demonstrates that Γµνρ are not tensor com-
ponents. Hence neither term in the RHS of equation (116) transforms as a
tensor. However, the sum of these two terms does transform as a tensor.

Exercise. Let ∇ and ∇̃ be two different connections on M . Show that
∇− ∇̃ is a (1, 2) tensor field. You can do this either from the definition of a
connection, or from the transformation law for the connection components.

The action of ∇ is extended to general tensor fields by the Leibniz property.
If T is a tensor field of type (r, s) then ∇T is a tensor field of type (r, s+ 1).
For example, if η is a covector field then, for any vector fields X and Y , we
define

(∇Xη)(Y ) ≡ ∇X(η(Y ))− η(∇XY ). (119)
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It is not obvious that this defines a (0, 2) tensor but we can see this as follows:

(∇Xη)(Y ) = ∇X(ηµY
µ)− ηµ(∇XY )µ

= X(ηµ)Y µ + ηµX(Y µ)− ηµ
(
Xνeν(Y

µ) + ΓµρνY
ρXν

)
,(120)

where we used (114). Now, the second and third terms cancel (X = Xνeν)
and hence (renaming dummy indices in the final term)

(∇Xη)(Y ) =
(
X(ηµ)− ΓρµνηρX

ν
)
Y µ, (121)

which is linear in Y µ so ∇Xη is a covector field with components

(∇Xη)µ = X(ηµ)− ΓρµνηρX
ν

= Xν
(
eν(ηµ)− Γρµνηρ

)
(122)

This is linear in Xν and hence ∇η is a (0, 2) tensor field with components

ηµ;ν = eν(ηµ)− Γρµνηρ (123)

In a coordinate basis, this is

ηµ;ν = ηµ,ν − Γρµνηρ (124)

Now the Leibniz rule can be used to obtain the formula for the coordinate
basis components of ∇T where T is a (r, s) tensor:

T µ1...µrν1...νs;ρ = T µ1...µrν1...νs,ρ + Γµ1σρT
σµ2...µr

ν1...νs + . . .+ ΓµrσρT
µ1...µr−1σ

ν1...νs

− Γσν1ρT
µ1...µr

σν2...νs − . . .− ΓσνsρT
µ1...µr

ν1...νs−1σ (125)

Exercise. Prove this result for a (1, 1) tensor.

Remark. We are using a comma and semi-colon to denote partial, and
covariant, derivatives respectively. If more than one index appears after a
comma or semi-colon then the derivative is to be taken with respect to all
indices. The index nearest to comma/semi-colon is the first derivative to
be taken. For example, f,µν = f,µ,ν ≡ ∂ν∂µf , and Xa

;bc = ∇c∇bX
a (we

cannot use abstract indices for the first example since it is not a tensor).
The second partial derivatives of a function commute: f,µν = f,νµ but for a
covariant derivative this is not true in general. Set η = df in (124) to get, in
a coordinate basis,

f;µν = f,µν − Γρµνf,ρ (126)
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Antisymmetrizing gives

f;[µν] = −Γρ[µν]f,ρ (coordinate basis) (127)

Definition. A connection ∇ is torsion-free if ∇a∇bf = ∇b∇af for any

function f . From (127), this is equivalent to

Γρ[µν] = 0 (coordinate basis) (128)

Lemma. For a torsion-free connection, if X and Y are vector fields then

∇XY −∇YX = [X, Y ] (129)

Proof. Use a coordinate basis:

XνY µ
;ν − Y νXµ

;ν = XνY µ
;ν + ΓµρνX

νY ρ − Y νXµ
;ν − ΓµρνY

νXρ

= [X, Y ]µ + 2Γµ[ρν]X
νY ρ

= [X, Y ]µ (130)

Hence the equation is true in a coordinate basis and therefore (as it is a
tensor equation) it is true in any basis.

Remark. Even with zero torsion, the second covariant derivatives of a tensor
field do not commute. More soon.

16 The Levi-Civita connection

On a manifold with a metric, the metric singles out a preferred connection:

Theorem. Let M be a manifold with a metric g. There exists a unique
torsion-free connection ∇ such that the metric is covariantly constant: ∇g =
0 (i.e. gab;c = 0). This is called the Levi-Civita (or metric) connection.

Proof. Let X, Y, Z be vector fields then

X(g(Y, Z)) = ∇X(g(Y, Z)) = g(∇XY, Z) + g(Y,∇XZ), (131)

where we used the Leibniz rule and ∇Xg = 0 in the second equality. Per-
muting X, Y, Z leads to two similar identities:

Y (g(Z,X)) = g(∇YZ,X) + g(Z,∇YX), (132)

42



Z(g(X, Y )) = g(∇ZX, Y ) + g(X,∇ZY ), (133)

Add the first two of these equations and subtract the third to get (using the
symmetry of the metric)

X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y )) = g(∇XY +∇YX,Z)

− g(∇ZX −∇XZ, Y )

+ g(∇YZ −∇ZY,X) (134)

The torsion-free condition implies

∇XY −∇YX = [X, Y ] (135)

Using this and the same identity with X, Y, Z permuted gives

X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y )) = 2g(∇XY, Z)− g([X, Y ], Z)

− g([Z,X], Y ) + g([Y, Z], X)

(136)

Hence

g(∇XY, Z) =
1

2
[X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+ g([X, Y ], Z) + g([Z,X], Y )− g([Y, Z], X)] (137)

This determines ∇XY uniquely because the metric is non-degenerate. It
remains to check that it satisfies the properties of a connection. For example:

g(∇fXY, Z) =
1

2
[fX(g(Y, Z)) + Y (fg(Z,X))− Z(fg(X, Y ))

+ g([fX, Y ], Z) + g([Z, fX], Y )− fg([Y, Z], X)]

=
1

2
[fX(g(Y, Z)) + fY (g(Z,X)) + Y (f)g(Z,X)

− fZ(g(X, Y ))− Z(f)g(X, Y ) + fg([X, Y ], Z)− Y (f)g(X,Z)

+ fg([Z,X], Y ) + Z(f)g(X, Y )− fg([Y, Z], X)]

=
f

2
[X(g(Y, Z)) + Y (g(Z,X))− Z(g(X, Y ))

+ g([X, Y ], Z) + g([Z,X], Y )− g([Y, Z], X)]

= fg(∇XY, Z) = g(f∇XY, Z) (138)
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and hence g(∇fXY − f∇XY, Z) = 0 for any vector field Z so, by the non-
degeneracy of the metric, ∇fXY = f∇XY .

Exercise. Show that ∇XY as defined by (137) satisfies the other properties
required of a connection.

Remark. In differential geometry, this theorem is called the fundamental
theorem of Riemannian geometry (although it applies for a metric of any
signature).

Let’s determine the components of the Levi-Civita connection in a coordinate
basis (for which [eµ, eν ] = 0):

g(∇ρeν , eσ) =
1

2
[eρ(gνσ) + eν(gσρ)− eσ(gρν)] , (139)

that is

g(Γτνρeτ , eσ) =
1

2
(gσν,ρ + gσρ,ν − gνρ,σ) (140)

The LHS is just Γτνρgτσ. Hence if we multiply the whole equation by the
inverse metric gµσ we obtain

Γµνρ =
1

2
gµσ (gσν,ρ + gσρ,ν − gνρ,σ) (141)

This is the same equation as we obtained earlier; we have now shown that
the Christoffel symbols are the components of the Levi-Civita connection.

Remark. In GR, we take the connection to be the Levi-Civita connection.
This is not as restrictive as it sounds: we saw above that the difference
between two connections is a tensor field. Hence we can write any connection
(even one with torsion) in terms of the Levi-Civita connection and a (1, 2)
tensor field. In GR we could regard the latter as a particular kind of ”matter”
field, rather than as part of the geometry of spacetime.

17 Geodesics (again)

Previously we defined timelike geodesics as curves that extremize the proper
time between two points of a spacetime, and showed that this gives the
equation

d2xµ

dτ 2
+ Γµνρ(x(τ))

dxν

dτ

dxρ

dτ
= 0, (142)
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where τ is the proper time along the curve. The tangent vector to the
curve has components Xµ = dxµ/dτ . This is defined only along the curve.
However, we can extend Xµ (in an arbitrary way) to a neighbourhood of
the curve, so that Xµ becomes a vector field, and the geodesic is an integral
curve of this vector field. The chain rule gives

d2xµ

dτ 2
=
dXµ(x(τ))

dτ
=
dxν

dτ

∂Xµ

∂xν
= XνXµ

,ν . (143)

Note that the LHS is independent of how we extend Xµ hence so must be
the RHS. We can now write the geodesic equation as

Xν
(
Xµ

,ν + ΓµνρX
ρ
)

= 0 (144)

which is the same as

XνXµ
;ν = 0, or ∇XX = 0, (145)

This is the way that geodesics are usually defined in differential geometry:

Definition. Let M be a manifold with a connection ∇. An affinely param-
eterized geodesic is an integral curve of a vector field X satisfying ∇XX = 0
(in a coordinate chart this is equivalent to (142)).

Remarks.

1. What do we mean by ”affinely parameterized”? Consider a curve with
parameter t whose tangent X satisfies the above definition. Let u be
some other parameter for the curve, so t = t(u) and dt/du > 0. Then
the tangent vector becomes Y = hX where h = dt/du. Hence

∇Y Y = ∇hX(hX) = h∇X(hX) = h2∇XX +X(h)hX = fY, (146)

where f = X(h) = dh/dt. Hence ∇Y Y = fY describes the same
geodesic. In this case, the geodesic is not affinely parameterized.

It always is possible to find an affine parameter so there is no loss of
generality in restricting to affinely parameterized geodesics. Note that
the new parameter also is affine iff X(h) = 0, i.e., h is constant. Then
u = at + b where a and b are constants with a > 0 (a = h−1). Hence
there is a 2-parameter family of affine parameters for any geodesic.
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2. In GR, this definition (with ∇ the Levi-Civita connection) replaces
our earlier definition in terms of curves that extremize proper time.
The reason for this is that, although the two definitions are equivalent
for timelike curves, the new definition applies for arbitrary (i.e. not
necessarily timelike) curves. In a coordinate chart, the new definition
reduces to (142), i.e., the same as for timelike geodesics. Hence the
easiest way to determine geodesics (of the Levi-Civita connection) is to
determine the geodesic equation using the Lagrangian (97).

Theorem. Let M be a manifold with a connection ∇. Let p ∈ M and
Xp ∈ Tp(M). Then there exists a unique affinely parameterized geodesic
through p with tangent vector Xp at p.
Proof. Choose a coordinate chart xµ in a neighbourhood of p. Consider a
curve parameterized by τ . It has tangent vector with components Xµ =
dxµ/dτ . The geodesic equation is (142). We want the curve to satisfy the
initial conditions

xµ(0) = xµp ,

(
dxµ

dτ

)
τ=0

= Xµ
p . (147)

This is a coupled system of n ordinary differential equations for the n func-
tions xµ(t). Existence and uniqueness is guaranteed by the standard theory
of ordinary differential equations.

Exercise. Let X be tangent to an affinely parameterized geodesic of the
Levi-Civita connection. Show that ∇X(g(X,X)) = 0 and hence g(X,X) is
constant along the geodesic. Therefore the tangent vector cannot change e.g.
from timelike to null along the geodesic.

Postulate. In GR, free particles move on geodesics (of the Levi-Civita con-
nection). These are timelike for massive particles, and null for massless
particles (e.g. photons).

Remark. In the timelike case we can use proper time as an affine parameter.
This imposes the additional restriction g(X,X) = −1. If τ and τ ′ both are
proper times along a geodesic then τ ′ = τ + b (i.e. a = 1 above). In other
words, clocks measuring proper time differ only by their choice of zero. In
particular, they measure equal time intervals. Similarly in the spacelike case
(or on a Riemannian manifold), we use arc length s as affine parameter,
which gives g(X,X) = 1 and s′ = s+b. In the null case, there is no analogue
of proper time or arc length and so there is a 2-parameter ambiguity in affine
parameterization.
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18 Normal coordinates

Definition. Let M be a manifold with a connection ∇. Let p ∈ M . The
exponential map from Tp(M) to M is defined as the map which sends Xp to
the point unit affine parameter distance along the geodesic through p with
tangent Xp at p.

Remark. It can be shown that this map is one-to-one and onto locally, i.e.,
for Xp in a neighbourhood of the origin in Tp(M).

Exercise. Let 0 ≤ t ≤ 1. Show that the exponential map sends tXp to the
point affine parameter distance t along the geodesic through p with tangent
Xp at p.

Definition. Let {eµ} be a basis for Tp(M). Normal coordinates at p are
defined in a neighbourhood of p as follows. Pick q near p. Then the coordi-
nates of q are Xµ where Xa is the element of Tp(M) that maps to q under
the exponential map.

Remark. From the above exercise, it follows that affinely parameterized
geodesics through p are given in normal coordinates by Xµ(t) = tXµ

p . Hence
the geodesic equation reduces to

Γµνρ(X(t))Xν
pX

ρ
p = 0. (148)

Evaluating at t = 0 gives that Γµνρ(p)X
ν
pX

ρ
p = 0. But Xp is arbitrary, so it

follows that
Γµ(νρ)(p) = 0. (149)

Hence, for a torsion-free connection, introducing normal coordinates at p has
the effect of setting to zero the connection components at p. The connection
components away from p will not vanish in general.
Now consider a manifold with a metric, and apply the above to the Levi-
Civita connection. We then have, at p,

0 = 2gµσΓσνρ = gµν,ρ + gµρ,ν − gνρ,µ (150)

Antisymmetrize on µν and use the symmetry of the metric to obtain g[µ|ρ|,ν] =
0, i.e, the final two terms above cancel, and hence

gµν,ρ = 0 at p (151)
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Again, we emphasize, this is valid only at the point p. At any point, we
can introduce normal coordinates to make the first partial derivatives of the
metric vanish at that point.
Now consider ∂/∂X1 in normal coordinate at p. The integral curve through
p of this vector field is Xµ(t) = (t, 0, 0, . . . , 0) (since Xµ = 0 at p). But, from
the above, this is the same as the geodesic through p with tangent vector e1

at p. It follows that ∂/∂X1 = e1 at p (since both vectors are tangent to the
curve at p). Similarly ∂/∂Xµ = eµ at p. But the choice of basis {eµ} was
arbitrary. So we are free to choose {eµ} to be an orthonormal basis. ∂/∂Xµ

then defines an orthonormal basis at p too. Hence, we can choose coordinates
so that gµν,ρ(p) = 0 and

gµν(p) = ηµν (Lorentzian) gµν(p) = δµν (Riemannian) (152)

In summary, on a Lorentzian (Riemannian) manifold, we can choose coor-
dinates in the neighbourhood of any point p so that the components of the
metric at p are the same as those of the Minkowski metric in inertial co-
ordinates (Euclidean metric in Cartesian coordinates), and the first partial
derivatives of the metric vanish at p.

Definition. In a Lorentzian manifold a local inertial frame at p is a set of
normal coordinates at p with the above properties.

Thus the assumption that spacetime is a Lorentzian manifold leads to a
precise mathematical definition of a local inertial frame.

19 Minimal coupling, equivalence principle

Now we can discuss the formulation of physical laws in curved spacetime.
The key requirement is general covariance: the laws of physics should be
independent of any choice of basis or coordinate chart.
In special relativity, we restrict attention to coordinate systems correspond-
ing to inertial frames. The laws of physics should exhibit special covariance,
i.e, take the same form in any inertial frame (this is the principle of rela-
tivity). There is a straightforward set of rules for converting such laws of
physics into generally covariant laws:

1. Replace the Minkowski metric by a curved spacetime metric.
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2. Replace partial derivatives with covariant derivatives (associated to the
Levi-Civita connection). This rule is called minimal coupling in analogy
with a similar rule for charged fields in electrodynamics.

3. Replace coordinate basis indices µ, ν etc (referring to an inertial frame)
with abstract indices a, b etc.

Examples. Let xµ denote the coordinates of an inertial frame, and ηµν the
inverse Minkowski metric (which has the same components as ηµν).

1. The simplest Lorentz invariant field equation is the wave equation for
a scalar field Φ

ηµν∂µ∂νΦ = 0. (153)

Follow the rules above to obtain the wave equation in a general space-
time:

gab∇a∇bΦ = 0, or ∇a∇aΦ = 0 or Φ;a
a = 0. (154)

A simple generalization of this equation is the Klein-Gordon equation
describing a scalar field of mass m:

∇a∇aΦ−m2Φ = 0. (155)

2. In special relativity, the electric and magnetic fields are combined into
an antisymmetric tensor Fµν . The electric and magnetic fields in an
inertial frame are obtained by the rule (i, j, k take values from 1 to 3)
F0i = −Ei and Fij = εijkBk. The (source-free) Maxwell equations take
the covariant form

ηµν∂µFνρ = 0, ∂[µFνρ] = 0. (156)

Hence in a curved spacetime, the electromagnetic field is described by
an antisymmetric tensor Fab satisfying

gab∇aFbc = 0, ∇[aFbc] = 0. (157)

The Lorentz force law for a particle of charge q and massm in Minkowski
spacetime is

d2xµ

dτ 2
=

q

m
ηµνFνρ

dxρ

dτ
(158)
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where τ is proper time. We saw previously that the LHS can be rewrit-
ten as uν∂νu

µ where uµ = dxµ/dτ is the 4-velocity. Now following the
rules above gives the generally covariant equation

ub∇bu
a =

q

m
gabFbcu

c =
q

m
F a

bu
b. (159)

Note that this reduces to the geodesic equation when q = 0.

Remark. The rules above ensure that we obtain generally covariant equa-
tions. But how do we know they are the right equations? The strong equiv-
alence principle states that, in a local inertial frame, the laws of physics
should take the same form as in an inertial frame in Minkowski spacetime.
But we saw above, that in a local inertial frame at p, Γµνρ(p) = 0 and hence
(first) covariant derivatives reduce to partial derivatives at p. For example,
∇µ∇µΦ = gµν∇µ∂νΦ (in any chart) and, at p, this reduces to ηµν∂µ∂νΦ in
a local inertial frame at p (since the metric at p is ηµν). Hence all of our
generally covariant equations reduce to the equations of special relativity in
a local inertial frame at any given point. The strong equivalence principle
is satisfied automatically if we use the above rules. Nevertheless, there is
still some scope for ambiguity, which arises from the possibility of including
terms in an equation involving the curvature of spacetime (see later). These
vanish identically in Minkowski spacetime. Sometimes, such terms are fixed
by mathematical consistency. However, this is not always possible: there is
no reason why it should be possible to derive laws of physics in curved space-
time from those in flat spacetime. The ultimate test is comparison with
observations.

20 Energy-momentum tensor

in GR, the curvature of spacetime is related to the energy and momentum
of matter. So we need to discuss how the latter concepts are defined in GR.
We shall start by discussing the energy and momentum of particles.
In special relativity, associated to any particle is a scalar called its rest mass
(or simply its mass) m. If the particle has 4-velocity uµ (again xµ denote
inertial frame coordinates) then its 4-momentum is

P µ = muµ (160)
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The time component of P µ is the particle’s energy and the spatial components
are its 3-momentum with respect to the inertial frame.
If an observer at some point p has 4-velocity vµ(p) then he measures the
particle’s energy, when the particle is at q, to be

E = −ηµνvµ(p)P ν(q). (161)

The way to see this is to choose an inertial frame in which, at p, the observer
is at rest at the origin, so vµ(p) = (1, 0, 0, 0) so E is just the time component
of P ν(q) in this inertial frame.
By the equivalence principle, GR should reduce to SR in a local inertial
frame. Hence in GR we also associate a rest mass m to any particle and
define the 4-momentum of a particle with 4-velocity ua as

P a = mua (162)

Note that
gabP

aP b = −m2 (163)

The EP implies that when the observer and particle both are at p then (161)
should be valid so the observer measures the particle’s energy to be

E = −gab(p)va(p)P b(p) (164)

However, an important difference between GR and SR is that there is no
analogue of equation (161) for p 6= q. This is because va(p) and P a(q) are
vectors defined at different points, so they live in different tangent spaces.
There is no way they can be combined to give a scalar quantity. An observer
at p cannot measure the energy of a particle at q.
Now let’s consider the energy and momentum of continuous distributions of
matter.

Example. Consider Maxwell theory (without sources) in Minkowski space-
time. Pick an inertial frame and work in pre-relativity notation using Carte-
sian tensors. The electromagnetic field has energy density

E =
1

8π
(EiEi +BiBi) (165)

and the momentum density (or energy flux density) is given by the Poynting
vector:

Si =
1

4π
εijkEjBk. (166)
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The Maxwell equations imply that these satisfy the conservation law

∂E
∂t

+ ∂iSi = 0. (167)

The momentum flux density is described by the stress tensor:

tij =
1

4π

[
1

2
(EkEk +BkBk) δij − EiEj −BiBj

]
, (168)

with the conservation law

∂Si
∂t

+ ∂jtij = 0. (169)

If a surface element has area dA and normal ni then the force exerted on this
surface by the electromagnetic field is tijnjdA.
In special relativity, these three objects are combined into a single tensor,
called variously the ”energy-momentum tensor”, the ”stress tensor”, the
”stress-energy-momentum tensor” etc. In an inertial frame it is

Tµν =
1

4π

(
FµρFν

ρ − 1

4
F ρσFρσ ηµν

)
(170)

where we’ve raised indices with ηµν . Note that this is a symmetric tensor. It
has components T00 = E , T0i = −Si, Tij = tij. The conservation laws above
are equivalent to the single equation

∂µTµν = 0. (171)

The definition of the energy-momentum tensor extends naturally to GR:

Definition. The energy-momentum tensor of a Maxwell field in a general
spacetime is

Tab =
1

4π

(
FacFb

c − 1

4
F cdFcd gab

)
(172)

Exercise (examples sheet 2). Show that Maxwell’s equations imply that

∇aTab = 0. (173)

In GR (and SR) we assume that continuous matter always is described by a
conserved energy-momentum tensor:
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Postulate. The energy, momentum, and stresses, of matter are described by
an energy-momentum tensor, a (0, 2) symmetric tensor Tab that is conserved:
∇aTab = 0.

Remark. Let ua be the 4-velocity of an observer O at p. Evaluating
Tab(p)u

aub in a local inertial frame for which uµ = (1, 0, 0, 0) reveals that
this quantity is the energy density of matter at p measured by O. Similarly,
the 4-vector ja = −T abub is the energy-momentum current measured by O.
The component of ja along ua is the energy density, the components perpen-
dicular to ua are the momentum density. In more detail, if xa is perpendicular
to ua (which implies that xa is spacelike) then the component of momentum
in the xa direction measured by O is jax

a. The part of Tab perpendicular to
ua describes the stress tensor of matter measured by O. More precisely, if xa

and ya both are perpendicular to ua then the ”xy component” of the stress
tensor measured by O is Tabx

ayb.

Remark. In an inertial frame xµ in Minkowski spacetime, local conservation
of Tab is equivalent to equations of the form (167) and (169). If one integrates
these over a fixed volume V in surfaces of constant t = x0 then one obtains
global conservation equations. For example, integrating (167) over V gives

d

dt

∫
V

E = −
∫
S

S · ndA (174)

where the surface S (with outward unit normal n) bounds V . In words: the
rate of increase of the energy of matter in V is equal to minus the energy
flux across S. In a general curved spacetime, such an interpretation is not
possible. This is because the gravitational field can do work on the matter
in the spacetime. One might think that one could obtain global conservation
laws in curved spacetime by introducing a definition of energy density etc
for the gravitational field. This is a subtle issue. The gravitational field is
described by the metric gab. By analogy with other fields, one might expect
that the energy density of the gravitational field should be some expression
quadratic in first derivatives of gab. But we have seen that we can choose
normal coordinates to make the first partial derivatives of gab vanish at any
given point. Gravitational energy certainly exists but not in a local sense.
For example one can define the total energy (i.e. the energy of matter and
the gravitational field) for certain spacetimes (this will be discussed in the
black holes course).
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Example. A perfect fluid is described by a 4-velocity vector field ua, and
two scalar fields ρ and p. The energy-momentum tensor is

Tab = (ρ+ p)uaub + pgab (175)

ρ and p are the energy density and pressure measured by an observer co-
moving with the fluid, i.e., one with 4-velocity ua (check: Tabu

aub = ρ+p−p =
ρ). The equations of motion of the fluid can be derived by conservation of
Tab:

Exercise (examples sheet 2). Show that, for a perfect fluid, ∇aTab = 0 is
equivalent to

ua∇aρ+ (ρ+ p)∇au
a = 0, (ρ+ p)ub∇bua = −(gab + uaub)∇bp (176)

These are relativistic generalizations of the mass conservation equation and
Euler equation of non-relativistic fluid dynamics. Note that a pressureless
fluid moves on timelike geodesics. This makes sense physically: zero pressure
implies that the fluid particles are non-interacting and hence behave like free
particles.

21 Parallel transport

On a general manifold there is no way of comparing tensors at different
points. For example, we can’t say whether a vector at p is the same as a
vector at q. However, with a connection we can define a notion of ”a tensor
that doesn’t change along a curve”:

Definition. Let Xa be the tangent to a curve. A tensor field T is parallelly
transported along the curve if ∇XT = 0.

Remarks.

1. Some times we say ”parallelly propagated” instead of ”parallelly trans-
ported”.

2. A geodesic is a curve whose tangent vector is parallelly transported
along the curve.

3. Let p be a point on a curve. If we specify T at p then the above equa-
tion determines T uniquely everywhere along the curve. For example,
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consider a (1, 1) tensor. Introduce a chart in a neighbourhood of p. Let
t be the parameter along the curve. The equation can be written

dT µν
dt

+ ΓµρσT
ρ
νX

σ − ΓρνσT
µ
ρX

σ = 0. (177)

Standard ODE theory guarantees a unique solution given initial values
for the components T µν .

If q is some other point on the curve then parallel transport along a
curve from p to q determines an isomorphism between tensors at p and
tensors at q.

If we use the Levi-Civita connection in Euclidean space or in Minkowski
spacetime and we use Cartesian/inertial frame coordinates then the Christof-
fel symbols vanish everywhere. A tensor is parallelly transported along a
curve iff its components are constant along the curve. Hence if we have
two different curves from p to q then the result of parallelly transporting T
from p to q is independent of which curve we choose. However, in a gen-
eral spacetime this is no longer true: parallel transport is path-dependent.
The path-dependence of parallel transport is measured by the Riemann cur-
vature tensor. For Euclidean or Minkowski spacetime with the Levi-Civita
connection, this vanishes and we say that the spacetime is flat.

22 The Riemann tensor

We shall return to the path-dependence of parallel transport below. First we
define the Riemann tensor is as follows:

Definition. The Riemann curvature tensor Ra
bcd of a connection ∇ is de-

fined by Ra
bcdZ

bXcY d = (R(X, Y )Z)a, where X, Y, Z are vector fields and
R(X, Y )Z is the vector field

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (178)

To demonstrate that this defines a tensor, we need to show that it is linear in
X, Y, Z. The symmetry R(X, Y )Z = −R(Y,X)Z implies that we need only
check linearity in X and Z. The non-trivial part is to check what happens if
we multiply X or Z by a function f :

R(fX, Y )Z = ∇fX∇YZ −∇Y∇fXZ −∇[fX,Y ]Z
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= f∇X∇YZ −∇Y (f∇XZ)−∇f [X,Y ]−Y (f)XZ

= f∇X∇YZ − f∇Y∇XZ − Y (f)∇XZ −∇f [X,Y ]Z +∇Y (f)XZ

= f∇X∇YZ − f∇Y∇XZ − Y (f)∇XZ − f∇[X,Y ]Z + Y (f)∇XZ

= fR(X, Y )Z (179)

R(X, Y )(fZ) = ∇X∇Y (fZ)−∇Y∇X(fZ)−∇[X,Y ](fZ)

= ∇X(f∇YZ + Y (f)Z)−∇Y (f∇XZ +X(f)Z)

−f∇[X,Y ]Z − [X, Y ](f)Z

= f∇X∇YZ +X(f)∇YZ + Y (f)∇XZ +X(Y (f))Z

−f∇Y∇XZ − Y (f)∇XZ −X(f)∇YZ − Y (X(f))Z

−f∇[X,Y ]Z − [X, Y ](f)Z

= fR(X, Y )Z (180)

It follows that our definition does indeed define a tensor. Let’s calculate its
components in a coordinate basis {eµ = ∂/∂xµ} (so [eµ, eν ] = 0). Use the
notation ∇µ ≡ ∇eµ ,

R(eρ, eσ)eν = ∇ρ∇σeν −∇σ∇ρeν

= ∇ρ(Γ
τ
νσeτ )−∇σ(Γτνρeτ )

= ∂ρΓ
µ
νσeµ + ΓτνσΓµτρeµ − ∂σΓµνρeµ − ΓτνρΓ

µ
τσeµ (181)

and hence, in a coordinate basis,

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓτνσΓµτρ − ΓτνρΓ

µ
τσ (182)

Remark. It follows that the Riemann tensor vanishes for the Levi-Civita

connection in Euclidean space or Minkowski spacetime (since one can choose
coordinates for which the Christoffel symbols vanish everywhere).

The following contraction of the Riemann tensor plays an important role in
GR:

Definition. The Ricci curvature tensor is the (0, 2) tensor defined by

Rab = Rc
acb (183)

Exercise. Calculate the components of the Riemann and Ricci tensors for
the static weak field metric (99), in the coordinate basis associated to (t, xi),
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and working to first order in Φ. (Note that the Christoffel symbols given by
equations (102) and (104) are O(Φ) so you can neglect the ΓΓ terms above.)
Show that the non-zero components are:

R0
i0j = −R0

ij0 = Ri
00j = −Ri

0j0 = −∂i∂jΦ (184)

Ri
jkl = 2δi[k∂l]∂jΦ− 2δj[k∂l]∂iΦ (185)

R00 = ∂k∂kΦ Rij = δij∂k∂kΦ (186)

We saw earlier that, with vanishing torsion, the second covariant derivatives
of a function commute. The same is not true of covariant derivatives of tensor
fields. The failure to commute arises from the Riemann tensor:

Exercise. Let ∇ be a torsion-free connection. Prove the Ricci identity:

∇c∇dZ
a −∇d∇cZ

a = Ra
bcdZ

b (187)

Hint. Show that the equation is true when multiplied by arbitrary vector
fields Xc and Y d.

23 Parallel transport again

Now we return to the relation between the Riemann tensor and the path-
dependence of parallel transport. Let X and Y be vector fields that are
linearly independent everywhere, with [X, Y ] = 0. Earlier we saw that
we can choose a coordinate chart (s, t, . . .) such that X = ∂/∂s and Y =
∂/∂t. Let p ∈ M and choose the coordinate chart such that p has coor-
dinates (0, . . . , 0). Let q, r, u be the point with coordinates (δs, 0, 0, . . .),
(δs, δt, 0, . . .), (0, δt, 0, . . .) respectively, where δs and δt are small. We can
connect p and q with a curve along which only s varies, with tangent X.
Similarly, q and r can be connected by a curve with tangent Y . p and u can
be connected by a curve with tangent Y , and u and r can be connected by
a curve with tangent X. The result is a small quadrilateral:
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Now let Zp ∈ Tp(M). Parallel transport Zp along pqr to obtain a vector
Zr ∈ Tr(M). Parallel transport Zp along pur to obtain a vector Z ′r ∈ Tr(M).
We shall calculate the difference Z ′r − Zr for a torsion-free connection.
It is convenient (although not necessary) to introduce a new coordinate chart,
namely normal coordinates at p. Henceforth, indices µ, ν, . . . will refer to this
chart. s and t will now be used as parameters along the curves with tangent
X and Y respectively.
pr is a curve with tangent vector X and parameter s. Along pr, Z is parallely
propagated: ∇XZ = 0 so dZµ/ds = −ΓµνρZ

νXρ and hence d2Zµ/ds2 =
−(ΓµνρZ

νXρ),σX
σ. Now Taylor’s theorem gives

Zµ
q = Zµ

p +

(
dZµ

ds

)
p

δs+
1

2

(
d2Zµ

ds2

)
p

δs2 +O(δs3)

= Zµ
p −

1

2

(
Γµνρ,σZ

νXρXσ
)
p
δs2 +O(δs3) (188)

where we have used Γµνρ(p) = 0 in normal coordinates at p. Now consider
parallel transport along qr to obtain

Zµ
r = Zµ

q +

(
dZµ

dt

)
q

δt+
1

2

(
d2Zµ

dt2

)
p

δt2 +O(δt3)

= Zµ
q −

(
ΓµνρZ

νY ρ
)
q
δt− 1

2

(
(ΓµνρZ

νY ρ),σY
σ
)
q
δt2 +O(δt3)

= Zµ
q −

[(
Γµνρ,σZ

νY ρXσ
)
p
δs+O(δs2)

]
δt

−1

2

[(
(Γµνρ,σZ

νY ρY σ
)
p

+O(δs)
]
δt2 +O(δt3)

= Zµ
p −

1

2

(
Γµνρ,σ

)
p

[
Zν
(
XρXσδs2 + Y ρY σδt2 + 2Y ρXσδsδt

)]
p

+O(δ3)

(189)

Here we assume that δs and δt both are O(δ) (i.e. δs = aδ for some non-zero
constant a and similarly for δt). Now consider parallel transport along pur.
The result can be obtained from the above expression simply by interchanging
X with Y and s with t. Hence we have

∆Zµ
r ≡ Z

′µ
r − Zµ

r =
[
Γµνρ,σZ

ν (Y ρXσ −XρY σ)
]
p
δsδt+O(δ3)

=
[(

Γµνσ,ρ − Γµνρ,σ
)
ZνXρY σ

]
p
δsδt+O(δ3)

= (Rµ
νρσZ

νXρY σ)p δsδt+O(δ3), (190)
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where we used the expression (182) for the Riemann tensor components (re-
member that Γµνρ(p) = 0). We derived this in a coordinate basis defined using
normal coordinates at p. But the LHS is a vector at r so we can transform
to any other basis by multiplying by the matrix Aνµ(r) = Aνµ(p) + O(δ).
This has the effect of performing the corresponding basis transformation on
the RHS. Hence our equation is basis-independent so we can write(

Ra
bcdZ

bXcY d
)
p

= lim
δ→0

∆Za
r

δsδt
(191)

The Riemann tensor does indeed measure the path-dependence of parallel
transport.

Remark. We considered parallel transport along two different curves from
p to r. However, we can reinterpret the result as describing the effect of
parallel transport of a vector Za

r around the closed curve rqpur to give the
vector Z

′a
r . Hence ∆Za

r measures the change in Za
r when parallel transported

around a closed curve.

24 Symmetries of the Riemann tensor

From its definition, we have the symmetry Ra
bcd = −Ra

bdc, equivalently:

Ra
b(cd) = 0. (192)

Proposition. If ∇ is torsion-free then

Ra
[bcd] = 0. (193)

Proof. Let p ∈ M and choose normal coordinates at p. Vanishing torsion
implies Γµνρ(p) = 0 and Γµ[νρ] = 0 everywhere. We have Rµ

νρσ = ∂ρΓ
µ
νσ−∂σΓµνρ

at p. Antisymmetrizing on νρσ now gives Rµ
[νρσ] = 0 at p in the coordinate

basis defined using normal coordinates at p. But if the components of a
tensor vanish in one basis then they vanish in any basis. This proves the
result at p. However, p is arbitrary so the result holds everywhere.

Proposition. (Bianchi identity). If ∇ is torsion-free then

Ra
b[cd;e] = 0 (194)
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Proof. Use normal coordinate at p again. At p,

Rµ
νρσ;τ = ∂τR

µ
νρσ (195)

In normal coordinates at p, ∂R = ∂∂Γ− Γ∂Γ and the latter terms vanish at
p, we only need to worry about the former:

Rµ
νρσ;τ = ∂τ∂ρΓ

µ
νσ − ∂τ∂σΓµνρ at p (196)

Antisymmetrizing gives Rµ
ν[ρσ;τ ] = 0 at p in this basis. But again, if this is

true in one basis then it is true in any basis. Furthermore, p is arbitrary.
The result follows.

25 Geodesic deviation

Remark. In Euclidean space, or in Minkowski spacetime, initially parallel
geodesics remain parallel forever. On a general manifold we have no notion of
”parallel”. However, we can study whether nearby geodesics move together
or apart. In particular, we can quantify their ”relative acceleration”.

Definition. Let M be a manifold with a connection∇. A 1-parameter family
of geodesics is a map γ : I × I ′ →M where I and I ′ both are open intervals
in R, such that, for fixed s, γ(s, t) is a geodesic with affine parameter t (so s
is the parameter that labels the geodesic)
Let T be the tangent vector to the geodesics and also define S to be the
vector tangent to the curves of constant t, which are parameterized by s:

In a chart xµ, the geodesics are specified by xµ(s, t) with Sµ = ∂xµ/∂s. Hence
xµ(s + δs, t) = xµ(s, t) + δsSµ(s, t) + O(δs2). Therefore δsSa is a deviation
vector which points from one geodesic to an infinitesimally nearby one in the
family.
The geodesics will fill out a 2-dimensional surface in our manifold. On this
surface we can use s and t as coordinates. We can extend these to coordinates
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(s, t, . . .) defined in a neighbourhood of the surface. This gives a coordinate
chart in which S = ∂/∂s and T = ∂/∂t on the surface. We can now use these
equations to define S and T throughout the neighbourhood of the surface,
i.e., S and T are now vector fields, and satisfy the important property

[S, T ] = 0 (197)

Remark. If we fix attention on a particular geodesic then V = δs∇TS
can be regarded as the rate of change of the relative position of a infinites-
imally nearby geodesic in the family i.e., as the ”relative velocity” of an
infinitesimally nearby geodesic. We can define the ”relative acceleration” of
an infinitesimally nearby geodesic in the family as A = ∇TV = δs∇T∇TS.
The word ”relative” is important: the acceleration of a curve with tangent
T is ∇TT , which vanishes here (as the curves are geodesics).

Proposition. If ∇ has vanishing torsion then

∇T∇TS = R(T, S)T (198)

Proof. Vanishing torsion gives ∇TS −∇ST = [T, S] = 0. Hence

∇T∇TS = ∇T∇ST = ∇S∇TT +R(T, S)T, (199)

where we used the definition of the Riemann tensor. But ∇TT = 0 because
T is tangent to (affinely parameterized) geodesics.

Remark. This result is known as the geodesic deviation equation. In abstract
index notation it is:

T c∇c(T
b∇bS

a) = Ra
bcdT

bT cSd (200)

This equation shows that curvature results in relative acceleration of geodesics.
It also provides another method of measuring Ra

bcd: at any point p we can
pick our 1-parameter family of geodesics such that T and S are arbitrary.
Hence by measuring the LHS above we can determine Ra

(bc)d. From this we
can determine Ra

bcd:

Exercise. Show that, for a torsion-free connection,

Ra
bcd =

2

3

(
Ra

(bc)d −Ra
(bd)c

)
(201)

Remarks.

61



1. Note that the relative acceleration vanishes for all families of geodesics
if, and only if, Ra

bcd = 0.

2. In GR, free particles follow geodesics of the Levi-Civita connection.
Geodesic deviation is the tendency of freely falling particles to move
together or apart. We have already met this phenomenon: it arises from
tidal forces. Hence the Riemann tensor is the quantity that measures
tidal forces.

26 Curvature of the Levi-Civita connection

Remark. From now on, we shall restrict attention to a manifold with met-
ric, and use the Levi-Civita connection. The Riemann tensor then enjoys
additional symmetries. Note that we can use the metric to define Rabcd.

Proposition. The Riemann tensor satisfies

Rabcd = Rcdab, R(ab)cd = 0. (202)

Proof. The second identity follows from the first and the antisymmetry of
the Riemann tensor. To prove the first, introduce normal coordinates at p,
so ∂µgνρ = 0 at p. Then, at p,

0 = ∂µδ
ν
ρ = ∂µ (gνσgσρ) = gσρ∂µg

νσ. (203)

Multiplying by the inverse metric gives ∂µg
νρ = 0 at p. Using this, we have

∂ρΓ
τ
νσ =

1

2
gτµ (gµν,σρ + gµσ,νρ − gνσ,µρ) at p (204)

And hence (as Γµνρ = 0 at p)

Rµνρσ =
1

2
(gµσ,νρ + gνρ,µσ − gνσ,µρ − gµρ,νσ) at p (205)

This satisfies Rµνρσ = Rρσµν at p using the symmetry of the metric and
the fact that partial derivatives commute. This establishes the identity in
normal coordinates, but this is a tensor equation and hence valid in any basis.
Furthermore p is arbitrary so the identity holds everywhere.

62



Proposition. The Ricci tensor is symmetric:

Rab = Rba (206)

Proof. Rab = gcdRdacb = gcdRcbda = Rd
bca = Rba where we used the first

identity above in the second equality.

Definition. The Ricci scalar is

R = gabRab (207)

Definition. The Einstein tensor is the symmetric (0, 2) tensor defined by

Gab = Rab −
1

2
Rgab (208)

Proposition. The Einstein tensor satisfies the contracted Bianchi identity:

∇aGab = 0 (209)

which can also be written as

∇aRab −
1

2
∇bR = 0 (210)

Proof. Examples sheet 2.

27 Einstein’s equation

Postulates of General Relativity.

1. Spacetime is a 4d Lorentzian manifold equipped with the Levi-Civita
connection.

2. Free particles follow timelike or null geodesics.

3. The energy, momentum, and stresses of matter are described by a sym-
metric tensor Tab that is conserved: ∇aTab = 0.
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4. The curvature of spacetime is related to the energy-momentum tensor
of matter by the Einstein equation (1915)

Gab ≡ Rab −
1

2
Rgab = 8πGTab (211)

where G is Newton’s constant.

We have discussed points 1-3 above. It remains to discuss the Einstein equa-
tion. We can motivate this as follows. In GR, the gravitational field is
described by the curvature of spacetime. Since the energy of matter should
be responsible for gravitation, we expect some relationship between curva-
ture and the energy-momentum tensor. The simplest possibility is a linear
relationship, i.e., a curvature tensor is proportional to Tab. Since Tab is sym-
metric, it is natural to expect the Ricci tensor to be the relevant curvature
tensor.
Einstein’s first guess for the field equation of GR was Rab = CTab for some
constant C. This does not work for the following reason. The RHS is con-
served hence this equation implies ∇aRab = 0. But then from the contracted
Bianchi identity we get ∇aR = 0. Taking the trace of the equation gives
R = CT (where T = T aa) and hence we must have ∇aT = 0, i.e., T is con-
stant. But, T vanishes in empty space and is usually non-zero inside matter.
Hence this is unsatisfactory.
The solution to this problem is obvious once one knows of the contracted
Bianchi identity. Take Gab, rather than Rab, to be proportional to Tab. The
coefficient of proportionality on the RHS of Einstein’s equation is fixed by
demanding that the equation reduces to Newton’s law of gravitation when
the gravitational field is weak and the matter is moving non-relativistically.
Let’s now check that this is indeed the case.
Consider the static weak field metric

ds2 = −(1 + 2Φ(x, y, z))dt2 + (1− 2Φ(x, y, z))(dx2 + dy2 + dz2) |Φ| � 1
(212)

We have seen previously that the geodesic equation in this background re-
duces to Newton’s laws of motion for a particle in a gravitational field, as-
suming non-relativistic motion. Let’s assume that the gravitational field is
due to a perfect fluid. Since the gravitational field is time-independent, it
is natural to assume that the fluid producing it also is time-independent,
i.e., the fluid is at rest: uµ = (u0, 0, 0, 0) in the above coordinates. Since
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gµνu
µuν = −1 we have u0 = 1 + O(Φ). Similarly u0 = −1 + O(Φ). Hence,

to lowest order in Φ,

T00 = ρ T0i = 0 Tij = p δij (213)

The Ricci tensor of this metric was given above:

R00 = ∂k∂kΦ R0i = 0 Rij = δij∂k∂kΦ (214)

The Ricci scalar is R = 2∂k∂kΦ to leading order and hence the Einstein
tensor is, to leading order,

G00 = 2∂k∂kΦ G0i = 0 Gij = 0 (215)

Hence the 00 component of Einstein’s equation is

∂k∂kΦ = 4πGρ (216)

which is Newton’s law of gravity! The 0i component of Einstein’s equation is
trivial. However, the ij component gives p = 0. This looks bad but remember
we are working only to leading order, so this equation just implies that the
pressure must be subleading compared to the energy density ρ. This is indeed
the case under all but the most extreme circumstances: reinserting factors
of c then p/c2 has the same dimensions as ρ. Under normal circumstances,
p/c2 � ρ and hence the gravitational effect of fluid pressure is negligible
compared to the gravitational effect of fluid energy density.

Remarks.

1. We’ve shown that the static weak field metric is a solution of Einstein’s
equation to leading order. Later we will show that it is the unique
solution describing a weak, time-independent, gravitational field.

2. In vacuum, Tab = 0 so Einstein’s equation gives Gab = 0. Contract-
ing indices gives R = 0. Hence the vacuum Einstein equation can be
written as

Rab = 0 (217)

3. The ”geodesic postulate” of GR is redundant. Using conservation of
the energy-momentum tensor it can be shown that a distribution of
matter that is small (compared to the scale on which the spacetime
metric varies), and sufficiently weak (so that its gravitational effect is
small), must follow a geodesic.
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4. The Einstein equation is a set of non-linear, second order, coupled, par-
tial differential equations for the components of the metric gµν . Very
few physically interesting explicit solutions are known so one has to de-
velop other methods to solve the equation, e.g., numerical integration.

5. How unique is the Einstein equation? Is there any tensor, other than
Gab that we could have put on the LHS? The answer is supplied by:

Theorem (Lovelock 1972). In a 4d spacetime, let Hab be a symmetric
tensor such that (i) in any coordinate chart, at any point, Hµν is a function
of gµν , gµν,ρ and gµν,ρσ at that point; (ii) ∇aHab = 0. Then there exist
constants α and β such that

Hab = αGab + βgab (218)

Hence (as Einstein realized) there is the freedom to add a constant multiple
of gab to the LHS of Einstein’s equation, giving

Gab + Λgab = 8πGTab (219)

Λ is called the cosmological constant. This no longer reduces to Newtonian
theory for slow motion in a weak field but the deviation from Newtonian
theory is unobservable if Λ is sufficiently small. Note that |Λ|−1/2 has the
dimensions of length. The effects of Λ are negligible on lengths or times small
compared to this quantity. Astronomical observations suggest that there is
indeed a very small positive cosmological constant: Λ−1/2 ∼ 109 light years,
the same order of magnitude as the size of the observable Universe. Hence
the effects of the cosmological constant are negligible except on cosmological
length scales. Therefore we shall set Λ = 0 until we discuss cosmology.
Note that we can move the cosmological constant term to the RHS of the
Einstein equation, and regard it as the energy-momentum tensor of a perfect
fluid with ρ = −p = Λ/(8πG). Hence the cosmological constant is sometimes
referred to as dark energy or vacuum energy. It is a great mystery why
it is so small because arguments from quantum field theory suggest that
it should be 10120 times larger. This is the cosmological constant problem.
One (controversial) proposed solution of this problem invokes the anthropic
principle, which posits the existence of many possible universes with different
values for constants such as Λ. If Λ was very different from its observed value
then galaxies never would have formed and hence we would not be here.

Remark. We have explicitly written Newton’s constant G throughout this
section. Henceforth we shall choose units so that G = c = 1.
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28 Maps between manifolds

Definition. Let M , N be differentiable manifolds of dimension m, n respec-
tively. A function φ : M → N is smooth if, and only if, ψA ◦φ◦ψ−1

α is smooth
for all charts ψα of M and all charts ψA of N (note that this is a map from
a subset of Rm to a subset of Rn).

If we have such a map then we can ”pull-back” a function on N to define a
function on M :

Definition. Let φ : M → N and f : N → R be smooth functions. The
pull-back of f by φ is the function φ∗(f) : M → R defined by φ∗(f) = f ◦ φ,
i.e., φ∗(f)(p) = f(φ(p)).

Furthermore, φ allows us to ”push-forward” a curve λ in M to a curve φ ◦ λ
in N . Hence we can push-forward vectors from M to N :

Definition. Let φ : M → N be smooth. Let p ∈ M and X ∈ Tp(M). The
push-forward of X with respect to φ is the vector φ∗(X) ∈ Tφ(p)(N) defined
as follows. Let λ be a smooth curve in M passing through p with tangent X
at p. Then φ∗(X) is the tangent vector to the curve φ ◦ λ in N at the point
φ(p).

Lemma. Let f : N → R. Then (φ∗(X))(f) = X(φ∗(f)).
Proof. Wlog λ(0) = p.

(φ∗(X))(f) =

[
d

dt
(f ◦ (φ ◦ λ))(t)

]
t=0

=

[
d

dt
(f ◦ φ) ◦ λ)(t)

]
t=0

= X(φ∗(f)) (220)

Exercise. Let xµ be coordinates on M and yα be coordinates on N (we use
different indices α, β etc for N because N is a different manifold which might
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not have the same dimension as M). Then we can regard φ as defining a
map yα(xµ). Show that the components of φ∗(X) are related to those of X
by

(φ∗(X))α =

(
∂yα

∂xµ

)
p

Xµ (221)

The map on covectors works in the opposite direction:

Definition. Let φ : M → N be smooth. Let p ∈ M and η ∈ T ∗φ(p)(N). The

pull-back of η with respect to φ is φ∗(η) ∈ T ∗p (M) defined by (φ∗(η))(X) =
η(φ∗(X)) for any X ∈ Tp(M).

Lemma. Let f : N → R. Then φ∗(df) = d(φ∗(f)).
Proof. Let X ∈ Tp(M). Then

(φ∗(df))(X) = (df)(φ∗(X)) = (φ∗(X))(f) = X(φ∗(f)) = (d(φ∗(f)))(X)
(222)

The first equality is the definition of φ∗, the second is the definition of df ,
the third is the previous Lemma and the fourth is the definition of d(φ∗(f)).
Since X is arbitrary, the result follows.

Exercise. Use coordinates xµ and yα as before. Show that the components
of φ∗(η) are related to the components of η by

(φ∗(η))µ =

(
∂yα

∂xµ

)
p

ηα (223)

Remarks.

1. In all of the above, the point p was arbitrary so push-forward and
pull-back can be applied to vector and covector fields, respectively.

2. The pull-back can be extended to a tensor S of type (0, s) by defin-
ing (φ∗(S))(X1, . . . Xs) = S(φ∗(X1), . . . φ∗(Xn)) where X1, . . . , Xs ∈
Tp(M). Similarly, one can push-forward a tensor of type (r, 0) by
defining φ∗(T )(η1, . . . , ηr) = T (φ∗(η1), . . . , φ∗(ηr)) where η1, . . . , ηs ∈
T ∗p (M). The components of these tensors are given by

(φ∗(S))µ1...µs =

(
∂yα1

∂xµ1

)
p

. . .

(
∂yαs

∂xµs

)
p

Sα1...αs (224)

(φ∗(T ))α1...αr =

(
∂yα1

∂xµ1

)
p

. . .

(
∂yαs

∂xµs

)
p

T µ1...µr (225)
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Example. The embedding of S2 into Euclidean space. Let M = S2 and N =
R3. Define φ : M → N as the map which sends the point on S2 with spherical
polar coordinates xµ = (θ, φ) to the point yα = (sin θ cosφ, sin θ sinφ, cos θ) ∈
R3. Consider the Euclidean metric g on R3, whose components are the
identity matrix δαβ. Pulling this back to S2 using (224) gives (φ∗g)µν =
diag(1, sin2 θ) (check!), the unit round metric on S2.

29 Diffeomorphisms, Lie Derivative

Definition. A map φ : M → N is a diffeomorphism iff it 1-1 and onto,
smooth, and has a smooth inverse.

Remark. This implies that M and N have the same dimension. In fact, M
and N have identical manifold structure.

With a diffeomorphism, we can extend our definitions of push-forward and
pull-back so that they apply for any type of tensor:

Definition. Let φ : M → N be a diffeomorphism and T a tensor of type
(r, s) on M . Then the push-forward of T is a tensor φ∗(T ) of type (r, s) on
N defined by (for arbitrary ηi ∈ T ∗φ(p)(N), Xi ∈ Tφ(p)(N))

φ∗(T )(η1, . . . , ηr, X1, . . . , Xs) = T (φ∗(η1), . . . , φ∗(ηr), (φ
−1)∗(X1), . . . , (φ−1)∗(Xs))

(226)

Exercises.

1. Convince yourself that push-forward commutes with the contraction
and outer product operations.

2. Show that the analogue of equation (225) for a (1, 1) tensor is

(φ∗(T ))µν =

(
∂yµ

∂xρ

)
p

(
∂xσ

∂yν

)
p

T ρσ (227)

(We don’t need to use indices α, β etc because now M and N have the
same dimension.) Generalize this result to a (r, s) tensor.

Remarks.

1. Pull-back can be defined in a similar way, with the result φ∗ = (φ−1)∗.
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2. We’ve taken an ”active” point of view, regarding a diffeomorphism as
a map taking a point p to a new point φ(p). However, there is an alter-
native ”passive” point of view in which we consider a coordinate chart
xµ defined near p and another chart yµ defined near φ(p). Regarding
the coordinates yµ as functions on N , we can pull them back to define
corresponding coordinates, which we also call yµ, on M . So now we
have two coordinate systems defined near p. The components of tensors
at p in the new coordinate basis are given by the tensor transformation
law, which is exactly the RHS of (227).

3. In GR we describe physics with a manifold M on which certain ten-
sor fields e.g. the metric g, Maxwell field F etc. are defined. If
φ : M → N is a diffeomorphism then there is no way of distinguishing
(M, g, F, . . .) from (N, φ∗(g), φ∗(F ), . . .); they give equivalent descrip-
tions of physics. If we set N = M this reveals that the set of tensor
fields (φ∗(g), φ∗(F ), . . .) is physically indistinguishable from (g, F, . . .).
(Adopting the passive point of view, this is because they differ by a co-
ordinate transformation.) If two sets of tensor fields are not related by a
diffeomorphism then they are physically distinguishable. It follows that
diffeomorphisms are the gauge symmetry (redundancy of description)
in GR.

This raises the following puzzle. The metric tensor is symmetric and
hence has 10 independent components. The Einstein equation appears
to give 10 independent equations, which looks good. But the Einstein
equation should not determine the components of the metric tensor
uniquely, but only up to diffeomorphisms. The resolution is that not
all components of the Einstein equations are truly independent because
they are related by the contracted Bianchi identity.

Note that diffeomorphisms allow us to compare tensors defined at different
points via push-forward or pull-back. This leads to a notion of a tensor field
possessing symmetry:

Definition. A diffeomorphism φ : M → M is a symmetry transformation
of a tensor field T iff φ∗(T ) = T everywhere. A symmetry transformation of
the metric tensor is called an isometry.

Definition. Let X be a vector field on a manifold M . Let φt be the map
which sends a point p ∈ M to the point parameter distance t along the
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integral curve of X through p (this might be defined only for small enough
t). It can be shown that φt is a diffeomorphism.

Remarks.

1. Note that φ0 is the identity map and φs◦φt = φs+t. Hence φ−t = (φt)
−1.

If φt is defined for all t ∈ R (in which case we say the integral curves of
X are complete) then these diffeomorphisms form a 1-parameter abelian
group.

2. Given X we’ve defined φt. Conversely, if one has a 1-parameter abelian
group of diffeomorphisms φt (i.e. one satisfying the rules just men-
tioned) then through any point p one can consider the curve with pa-
rameter t given by φt(p). Define X to be the tangent to this curve at
p. Doing this for all p defines a vector field X. The integral curves of
X generate φt in the sense defined above.

3. If we use (φt)∗ to compare tensors at different points then the parameter
t controls how near the points are. In particular, in the limit t → 0,
we are comparing tensors at infinitesimally nearby points. This leads
to the notion of a new type of derivative:

Definition. The Lie derivative of a tensor field T with respect to a vector
field X at p is

(LXT )p = lim
t→0

((φ−t)∗T )p − Tp
t

(228)

Remark. The Lie derivative wrt X is a map from (r, s) tensor fields to (r, s)

tensor fields. It obeys LX(αS + βT ) = αLXS + βLXT where α and β are
constants.
The easiest way to demonstrate other properties of the Lie derivative is to
introduce coordinates in which the components of X are simple. Let Σ be
a hypersurface that has the property that X is nowhere tangent to Σ (in
particular X 6= 0 on Σ). Let xi, i = 1, 2, . . . , n− 1 be coordinates on Σ. Now
assign coordinates (t, xi) to the point parameter distance t along the integral
curve of X that starts at the point with coordinates xi on Σ:
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This defines a coordinate chart (t, xi) at least for small t, i.e., in a neighbour-
hood of Σ. Furthermore, the integral curves of X are the curves (t, xi) with
fixed xi and parameter t. The tangent to these curves is ∂/∂t so we have
constructed coordinates such that X = ∂/∂t. The diffeomorphism φt is very
simple: it just sends the point with coordinates xµ = (s, xi) to the point with
coordinates yµ = (s+ t, xi) hence ∂yµ/∂xν = δµν . The generalization of (227)
to a (r, s) tensor then gives

[((φt)∗(T ))µ1,...,µrν1,...νs ]φt(p) = [T µ1,...,µrν1,...νs ]p (229)

and hence
[((φt)∗(T ))µ1,...,µrν1,...νs ]p = [T µ1,...,µrν1,...νs ]φ−t(p) (230)

It follows that, if p has coordinates (s, xi) in this chart,

(LXT )µ1,...,µrν1,...νs = lim
t→0

1

t

(
T µ1,...,µrν1,...νs(s+ t, xi)− T µ1,...,µrν1,...νs(s, xi)

)
=

[
∂

∂t
T µ1,...,µrν1,...νs(t, x

i)

]
(s,xi)

(231)

So in this chart, the Lie derivative is simply the partial derivative with respect
to the coordinate t. It follows that the Lie derivative has the following
properties:

1. It obeys the Leibniz rule: LX(S ⊗ T ) = (LXS)⊗ T + S ⊗ LXT .

2. It commutes with contraction.

Now let’s derive a basis-independent formula for the Lie derivative. First con-
sider a function f . In the above chart, we have LXf = (∂/∂t)(f). However,
in this chart we also have X(f) = (∂/∂t)(f). Hence

LXf = X(f) (232)

Both sides of this expression are scalars and hence this equation must be
valid in any basis. Next consider a vector field Y . In our coordinates above
we have

(LXY )µ =
∂Y µ

∂t
(233)

but we also have

[X, Y ]µ =
∂Y µ

∂t
(234)
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If two vectors have the same components in one basis then they are equal in
all bases. Hence we have the basis-independent result

LXY = [X, Y ] (235)

Remark. Let’s compare the Lie derivative and the covariant derivative. The

former is defined on any manifold whereas the latter requires extra structure
(a connection). Equation (235) reveals that the Lie derivative wrt X at p
depends on Xp and the first derivatives of X at p. The covariant derivative
wrt X at p depends only on Xp, which enables us to remove X to define
the tensor ∇T , a covariant generalization of partial differentiation. It is not
possible to define a corresponding tensor LT using the Lie derivative. Only
LXT makes sense.
On examples sheet 3, you are asked to derive the formula for the Lie derivative
of a covector ω valid in any coordinate basis:

(LXω)µ = Xν∂νωµ + ων∂µX
ν (236)

and show that this can also be written in the basis-independent form (where
∇ is the Levi-Civita connection)

(LXω)a = Xb∇bωa + ωb∇aX
b (237)

You are also asked to show that the Lie derivative of the metric is

(LXg)µν = Xρ∂ρgµν + gµρ∂νX
ρ + gρν∂µX

ρ (238)

and that this can be written in the basis-independent form

(LXg)ab = ∇aXb +∇bXa (239)

Remark. If φt is a symmetry transformation of T (for all t) then LXT = 0.

If φt are a 1-parameter group of isometries then LXg = 0, i.e.,

∇aXb +∇bXa = 0 (240)

This is Killing’s equation and solutions are called Killing vector fields. Con-
sider the case in which there exists a chart for which the metric tensor does
not depend on some coordinate z. Then equation (238) reveals that ∂/∂z is
a Killing vector field. Conversely, if the metric admits a Killing vector field
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then equation (231) demonstrates that one can introduce coordinates such
that the metric tensor is independent of one of the coordinates.

Lemma. Let Xa be a Killing vector field and let V a be tangent to an affinely
parameterized geodesic. Then XaV

a is constant along the geodesic.
Proof. The derivative of XaV

a along the geodesic is

d

dτ
(XaV

a) = V (XaV
a) = ∇V (XaV

a) = V b∇b(XaV
a)

= V aV b∇bXa +XaV
b∇bV

a (241)

The first term vanishes because Killing’s equation implies that ∇bXa is an-
tisymmetric. The second term vanishes by the geodesic equation.

30 The Schwarzschild solution

This is probably the most important exact solution of the vacuum Einstein
equation. It was also the first non-trivial solution to be discovered (in 1916).
To a good approximation, the Sun is spherically symmetric and therefore we
expect its gravitational field also to be spherically symmetric. What does
this mean? You are familiar with the idea that a round sphere is invariant
under rotations, which form the group SO(3). In the language of the previous
section, this can be phrased as follows. Note that the set of all isometries of
a manifold with metric forms a group. Consider the unit round metric on
S2:

dΩ2 = dθ2 + sin2 θ dφ2. (242)

The isometry group of this metric is SO(3). Any 1-dimensional subgroup of
SO(3) gives a 1-parameter family of isometries, and hence a Killing vector
field. The Killing vector fields of S2 are explored on examples sheet 3. A
spacetime is spherically symmetric if it possesses the same symmetries as a
round S2:

Definition. A spacetime is spherically symmetric if its isometry group con-
tains an SO(3) subgroup whose orbits are 2-spheres. (The orbit of a point p
under an isometry group G is the set of points that one obtains by acting on
p with an element of G.)

Remark. The statement about the orbits is important: there are examples
of spacetimes with SO(3) isometry group in which the orbits of SO(3) are
3-dimensional (e.g. Taub-NUT space: see Hawking and Ellis).
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Theorem (Birkhoff). The unique spherically symmetric solution of the
vacuum Einstein equation is the Schwarzschild solution. In Schwarzschild
coordinates (t, r, θ, φ) it has metric

ds2 = −
(

1− 2M

r

)
dt2 +

dr2(
1− 2M

r

) + r2
(
dθ2 + sin2 θ dφ2

)
, (243)

where M is a real constant and θ, φ parameterize S2.
Proof. See Hawking & Ellis (rigorous) or Carroll (not so rigorous).

Remarks.

1. The word vacuum is important: this metric applies only outside any
matter present in the spacetime, e.g., it applies outside the surface of
the Sun.

2. The spherical symmetry is obvious: SO(3) just acts on the S2 part of
the metric, leaving the t and r coordinates fixed. Surfaces of constant
t and r are two-spheres of area 4πr2. This is actually how the ”radial”
coordinate r is defined. (Note that r is not the ”distance from the
origin”, in fact this notion does not make sense. Can you see why?)

3. r → −r has the same effect as M → −M so wlog r ≥ 0.

Note that if M = 0 then the Schwarzschild solution is just Minkowski space-
time in spherical polar coordinates. If M 6= 0 then for r � |M |, the metric is
almost Minkowskian: the solution is asymptotically flat. (This term will be
defined precisely in the black holes course.) So, at large r, the coordinates
have essentially the same interpretation as they do in Minkowski spacetime.
At large r we can approximate the metric as

ds2 ≈ −
(

1− 2M

r

)
dt2 +

(
1 +

2M

r

)
dr2 + r2dΩ2, (244)

where dΩ2 defined in (242) is a convenient notation for the S2 metric. Let’s
define a new coordinate R by

r = R

√
1 +

2M

R
(245)
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Note that r � |M | iff R� |M |, in which case r = R + M +O(M2/R) and
hence dr = (1+O(M2/R2))dR. Plugging this into the metric and neglecting
terms of order M2/R2 now gives

ds2 ≈ −
(

1− 2M

R

)
dt2 +

(
1 +

2M

R

)(
dR2 +R2dΩ2

)
(246)

But this is exactly the static weak field metric we encountered earlier, albeit
with Cartesian coordinates (x, y, z) replaced by spherical polar coordinates
(R, θ, φ). The Newtonian potential is Φ = −M/R. This is the potential that
arises far from an body of mass M near the origin. Hence we deduce that the
parameter M in the Schwarzschild spacetime is the mass of whatever body
is creating this gravitational field. Therefore we assume M > 0 henceforth.
(The black holes course will give a more careful discussion of how to define
mass in GR and the interpretation of the case M < 0.)

Although we assumed only spherical symmetry, the Schwarzschild solution
has another symmetry: the metric is independent of t (i.e. ∂/∂t is a Killing
vector field). The full isometry group is R × SO(3) where R denotes time
translations. In other words, the gravitational field outside a spherical body
is independent of time. This is true even if the body itself is time-dependent.
For example, consider a spherical star that ”uses up its nuclear fuel”. It
will collapse under its own gravity, a time-dependent process. But the
spacetime outside the star always will be described by the time-independent
Schwarzschild solution.

In the coordinate basis associated with Schwarzschild coordinates, the met-
ric gµν is non-degenerate except for a few special values of the coordinates.
Clearly there is a problem at θ = 0, π but this is just the usual problem of
the (θ, φ) coordinates not covering all of S2. This problem can be overcome
by transforming to new coordinates on S2 e.g. the coordinates (θ′, φ′) dis-
cussed earlier. More seriously, some metric components diverge at r = 2M
and at r = 0. We shall discuss the meaning of this later. For now, note
that for the Sun, 2M is about 3 km. The radius of the Sun is 7 × 105 km.
Hence r = 2M is well inside the Sun, where the Schwarzschild solution is not
applicable anyway. Later, we’ll show that if no matter is present then the
Schwarzschild spacetime describes a black hole, with r = 2M the surface of
the hole.

Exercise. Let Alice and Bob be at rest in the Schwarzschild spacetime
(i.e. they have worldlines with constant r, θ, φ). Let rA and rB be their
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radial coordinates. Repeat the gravitational redshift calculation of section
2.6 using the Schwarzschild spacetime. Show that

∆τB =

(
1− 2M

rB

)1/2(
1− 2M

rA

)−1/2

∆τA (247)

Assume Bob has rB � 2M so the first factor can be approximated by 1.
Note that ∆τB > ∆τA so signals sent by Alice undergo a redshift, by a factor
that diverges as rA → 2M .

31 Geodesics of the Schwarzschild solution

Exercise (examples sheet 1). Show that the t and φ components of the
geodesic equation are

d

dτ

[(
1− 2M

r

)
dt

dτ

]
= 0,

d

dτ

(
r2 sin2 θ

dφ

dτ

)
= 0, (248)

where τ is proper time (for timelike geodesics) or an affine parameter (for
null geodesics). Show that the θ component is

d

dτ

(
r2 dθ

dτ

)
− r2 sin θ cos θ

(
dφ

dτ

)2

= 0. (249)

A final equation can be obtained from gabu
aub = −σ, where ua is the tangent

to the geodesic and σ = 1 for timelike geodesics and σ = 0 for null geodesics:

−σ = −
(

1− 2M

r

)(
dt

dτ

)2

+

(
1− 2M

r

)−1(
dr

dτ

)2

+r2

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]
,

(250)
Note that equations (248) can be integrated immediately:(

1− 2M

r

)
dt

dτ
= E, r2 sin2 θ

dφ

dτ
= h, (251)

where E and h are constants, i.e, conserved quantities along the geodesic.
The existence of these conserved quantities is a consequence of the fact that
the Lagrangian from which geodesics are derived is invariant under transla-
tions of t and φ. More geometrically, it is because ∂/∂t and ∂/∂φ are Killing
vector fields and so give rise to conserved quantities along geodesics.

77



Consider a timelike geodesic which extends to r � M so E ≈ dt/dτ . Since
the spacetime is asymptotically flat, we can use the Minkowski spacetime
result that dt/dτ is the ”time” component of the 4-velocity, which is the
energy per unit rest mass of the particle. Hence we shall call E the energy
per unit rest mass of the particle in general. In the limit of slow motion we
have τ ≈ t and then we see h is the angular momentum per unit mass of the
particle about the z-axis. Therefore we shall call h the angular momentum
per unit rest mass more generally. In the null case, the freedom to rescale
affine parameter τ → aτ implies that E and h do not have direct physical
significance. However, the ratio h/E is invariant under this rescaling. Its
physical significance is discussed below.
Eliminating dφ/dτ from the θ equation and rearranging gives

r2 d

dτ

(
r2 dθ

dτ

)
− h2 cos θ

sin3 θ
= 0. (252)

As we have emphasized previously, one can define spherical polar coordinates
on S2 in many different ways. It is convenient to rotate our (θ, φ) coordinates
so that our geodesic has θ = π/2 and dθ/dτ = 0 at τ = 0, i.e., the geodesic
initially lies in, and is moving tangentially to, the ”equatorial plane” θ = π/2.
We emphasize: this is just a choice of the coordinates (θ, φ). Now, whatever
r(τ) is (and we don’t know yet), equation (252) is a second order ODE for
θ with initial conditions θ = π/2, dθ/dτ = 0. One solution of this initial
value problem is θ(τ) = π/2 for all τ . Standard uniqueness results for ODEs
guarantee that this is the unique solution. Hence we have shown that we
can always choose our θ, φ coordinates so that the geodesic is confined to the
equatorial plane. We shall assume this henceforth.
Now we can eliminate dt/dτ and dφ/dτ from equation (250) and set θ = π/2.
Rearranging gives

1

2

(
dr

dτ

)2

+ V (r) =
1

2
E2, (253)

where

V (r) =
1

2

(
1− 2M

r

)(
σ +

h2

r2

)
=

1

2
σ − σM

r
+

h2

2r2
− Mh2

r3
(254)

Hence the radial motion of the geodesic is the same as that of a Newtonian
particle of unit mass, with total energy E2/2, moving in a 1-dimensional
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potential V (r). Of course, the same is true for particles orbiting a spheri-
cally symmetric body in Newtonian theory. The difference is in the effective
potential V : the final term is absent in Newtonian theory. This term decays
faster than the other terms so its effects are most pronounced at small r, i.e.,
near to the body creating the gravitational field.

32 Null geodesics

Consider null geodesics: σ = 0. The effective potential has the following
form:

There is a maximum at r = 3M . Hence there is a null geodesic for which
r = 3M , i.e., a circular orbit. However, since this corresponds to a maximum
of the potential, it is unstable: a small perturbation would cause this geodesic
either to fall to smaller r or escape to larger r. For the Sun, this orbit
is unphysical since it lies well inside the surface, where the Schwarzschild
solution is not valid.
The behaviour of null geodesics is investigated in detail on examples sheet 3.
We’ll summarize the results here.
Solving the geodesic equation at large r (where the metric is almost flat)
reveals that a geodesic approaches a straight line, parallel to, and distance
b = |h/E| from, a lines of constant φ. This parameter b is called the impact
parameter of the geodesic (recall that this is independent of the choice of
affine parameter for the geodesic).
The qualitative property of the geodesic follows from the ”particle in a po-
tential” analogy discussed above. If b <

√
27M , then the ”energy” of the

particle exceeds the potential barrier and so a particle incident from large r
will simply fall to r = 2M . This implies that our geodesic will spiral all the

79



way to r = 2M :

On the other hand, if b >
√

27M then the particle will be reflected by
the potential barrier and return to large r, where it will again approach a
straight line with impact parameter b but now centered on a new value of φ.
In flat spacetime, the change in φ along the geodesic is ∆φ = π but in the
Schwarzschild geometry, the geodesic is attracted by the gravitational field
so ∆φ > π:

∆φ can be calculated for 2M/b � 1 (for a light ray grazing the surface of
the Sun, 2M/b ∼ 10−5), with the result

∆φ ≈ π +
4M

b
(255)

For a light ray grazing the surface of the Sun, 4M/b is about 1.7 seconds
of arc. This prediction has been confirmed by observations, starting with
Eddington’s famous expedition in 1919.
Another important test of GR is the Shapiro time delay. This effect con-
cerns a radar signal sent from the Earth to pass close to the Sun, reflect off
another planet or a spacecraft, and then return to Earth. What is the time
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interval measured on Earth between emission of the signal and detection of
the reflected signal?
The time taken for this experiment is sufficiently small that the motion of
the Earth and the reflector around the Sun can be neglected, so we treat the
Earth and reflector as at rest at Schwarzschild radius rE and rR respectively.
Let r0 denote the minimum value of r along the null geodesic followed by the
signal:

A calculation (examples sheet 3) reveals that the proper time interval mea-
sured on Earth between emission of the signal and receiving the reflected
signal is

∆τ = (∆τ)flat + 2M

[
log

(
4rErR
r2

0

)
+ 1− rR

rE

]
(256)

where (∆τ)flat is the proper time taken by the same geodesic in flat spacetime.
The correction term is positive (unless rR � rE) so GR predicts a delay in
the time taken relative to the flat spacetime result. This effect was detected
during the 1976 Viking mission to Mars. Taking r0 to be the radius of the
Sun gives a total time for the trip of about 41 minutes, and the time delay
due to GR is only about 250µs. Nevertheless, the prediction of GR was
confirmed. One way to parameterize the result is to replace (1− 2M/r)−1 in
the Schwarzschild metric with (1−2γM/r)−1, repeat the analysis above, and
then compare the result to observations to determine γ. The observations
imply γ = 1.000± 0.002, confirming the prediction of GR to high accuracy.

33 Timelike geodesics

Now consider timelike geodesics (σ = 1). A planet orbiting the Sun follows a
timelike geodesic of the Schwarzschild solution (with small corrections coming
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from the influence of other planets). The effective potential has turning
points where

r± =
h2 ±

√
h4 − 12h2M2

2M
(257)

If h2 < 12M2 then there are no turning points, the effective potential is a
monotonically increasing function of r:

A free particle incident from large r will spiral into r = 2M . If h2 > 12M2

then there are two turning points. r = r+ is a minimum and r = r− a
maximum:

Hence there exist stable circular orbits with r = r+ and unstable circular
orbits with r = r−.

Exercise. Show that 3M < r− < 6M < r+.

r+ = 6M is called the innermost stable circular orbit (ISCO). For the solar
system, this lies will inside the Sun where the Schwarzschild solution is not
valid. But for a black hole it lies outside the hole. There is no analogue of
the ISCO in Newtonian theory, for which all circular orbits are stable and
exist down to arbitrarily small r.
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The energy per unit rest mass of a circular orbit can be calculated using
E2/2 = V (r) (since dr/dτ = 0). Evaluating at r = r± gives (exercise)

E =
r − 2M

r1/2(r − 3M)1/2
(258)

Hence an orbit with large r has E ≈ 1 − M/(2r), i.e., its energy is m −
Mm/(2r) where m is the mass of the body. The first term is just the rest
mass energy (E = mc2) and the second term is the gravitational binding
energy of the orbit.
Many black holes are surrounded by an accretion disc: a disc of material
orbiting the black hole, perhaps being stripped off a nearby star by tidal
forces due to the black hole’s gravitational field. As a first approximation,
we can treat particles in the disc as moving on geodesics. A particle in
this material will gradually lose energy e.g. because of friction in the disc
and so its value of E will decrease. This implies that r will decreases: the
particle will gradually spiral in to smaller and smaller r. This is a very slow
process so it can be approximated by the particle moving slowly from one
stable circular orbit to another. Eventually the particle will reach the ISCO,
which has E =

√
8/9, after which it falls rapidly into the hole. The energy

that the particle loses in this process leaves the disc as radiation, typically
X-rays. The fraction of rest mass conveted to radiation in this process is
1 −

√
8/9 ≈ 0.06. This is an enormous fraction of the energy, much higher

than the fraction of rest mass energy liberated in nuclear reactions. That is
why black holes are believed to power some of the most energetic phenomena
in the universe e.g. quasars.

Clearly there also exist non-circular bound orbits in which r oscillates around
the local minimum of the potential at r = r+. The perihelion of an orbit
denotes the point on the orbit with the smallest r. In Newtonian theory,
for which the r−3 term is absent in the effective potential, these orbits are
ellipses. The change in φ between two successive perihelions is therefore
∆φ = 2π. In GR, the presence of the r−3 term leads to precession of the
perihelion: ∆φ > 2π (examples sheet 3). In the solar system, the effect is
largest for the planet nearest the Sun, i.e., Mercury, for which the predicted
precession is 42.98 seconds of arc per century. The measured precession is
much larger (5599.74” ± 0.41” per century) but when one subtracts various
known Newtonian effects (e.g. precession of the Earth’s rotation axis, the
gravitational attraction of Venus) one is left with 42.98”±0.04” per century.
The prediction of GR is confirmed to high accuracy.
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34 The Schwarzschild black hole

So far, we have used the Schwarzschild metric to describe the spacetime
outside a spherical star. Let’s now investigate the Schwarzschild metric as a
solution that is valid everywhere. This means we need to understand what
happens at r = 2M .
Consider the Schwarzschild solution with r > 2M . The analysis of geodesics
reveals that some geodesics reach r = 2M in finite affine parameter τ . Let’s
consider the simplest type of geodesic: radial null geodesics. ”Radial” means
that θ and φ are constant along the geodesic, so h = 0. By rescaling the affine
parameter τ we can arrange that E = 1. The geodesic equation reduces to

dt

dτ
=

(
1− 2M

r

)−1

,
dr

dτ
= ±1 (259)

where the upper sign is for an outgoing geodesic (i.e. increasing r) and
the lower for ingoing. From the second equation it is clear that an ingo-
ing geodesic starting at some r > 2M will reach r = 2M in finite affine
parameter. Along such a geodesic we have

dt

dr
= −

(
1− 2M

r

)−1

(260)

The RHS has a simple pole at r = 2M and hence t diverges logarithmically
as r → 2M . To investigate what is happening at r = 2M , define the ”Regge-
Wheeler radial coordinate” r∗ by

r∗ = r + 2M log | r
2M
− 1| ⇒ dr∗ =

dr(
1− 2M

r

) (261)

(We’re interested only in r > 2M for now, the modulus signs are for later
use.) Note that r∗ ∼ r for large r and r∗ → −∞ as r → 2M . Along a radial
null geodesic we have

dt

dr∗
= ±1 (262)

so
t∓ r∗ = constant. (263)

Let’s define a new coordinate v by

v = t+ r∗ (264)
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so that v is constant along ingoing radial null geodesics. Now let’s use
(v, r, θ, φ) as coordinates instead of (t, r, θ, φ). We eliminate t by t = v−r∗(r)
and hence

dt = dv − dr(
1− 2M

r

) (265)

Substituting this into the metric gives

ds2 = −
(

1− 2M

r

)
dv2 + 2dvdr + r2dΩ2 (266)

The new coordinates are called ingoing Eddington-Finkelstein coordinates.
In these coordinates, the metric and the inverse metric both are smooth at
r = 2M . The Schwarzschild spacetime can be extended through the surface
r = 2M to a new region with r < 2M . (The significance of the inverse metric
being smooth is that it guarantees that no eigenvalue of the metric can vanish
so the metric remains Lorentzian everywhere.) Note that this new region is
still spherically symmetric. How is this consistent with Birkhoff’s theorem?

Exercise. For r < 2M , define r∗ by (261) and t by (264). Show that if the
metric (266) is transformed to coordinates (t, r, θ, φ) then it becomes (243)
but now with r < 2M .

Note that ingoing radial null geodesics in the EF coordinates have dr/dτ =
−1 (and constant v). Hence such geodesics will reach r = 0 in finite affine
parameter. What happens there? A calculation (examples sheet 2) gives

RabcdR
abcd ∝ M2

r6
(267)

This diverges as r → 0. This quantity is a scalar, and therefore diverges
in all charts. Therefore there exists no chart for which the metric can be
smoothly extended through r = 0. r = 0 is an example of a curvature
singularity, where tidal forces become infinite and the known laws of physics
break down. Strictly speaking, r = 0 is not part of the spacetime manifold
because the metric is not defined there.
So far we have considered ingoing radial null geodesics, which have v =
constant. Now consider the outgoing geodesics, i.e., t − r∗ = constant. In
the EF coordinates this is v = 2r∗ + constant, i.e.,

v = 2r + 4M log | r
2M
− 1|+ constant (268)
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It is interesting to plot the radial null geodesics on a spacetime diagram. Let
t∗ = v − r so that the ingoing radial null geodesics are straight lines at 45◦

in the (t∗, r) plane. This gives the Finkelstein diagram:

Remarks

1. Knowing the ingoing and outgoing radial null geodesics lets us draw
light ”cones” on this diagram. Radial timelike curves have tangent
vectors that lie inside the light cone at any point.

2. The ”outgoing” radial null geodesics have increasing r if r > 2M . But if
r < 2M then r decreases for both families of null geodesics. Both reach
the curvature singularity at r = 0 in finite affine parameter. Since
nothing can travel faster than light, the same is true for radial timelike
curves. In fact one can show that r decreases along any timelike or
null curve (irrespective of whether or not it is radial or geodesic) in
r < 2M . Hence no signal can be sent from a point with r < 2M to
a point with r > 2M , in particular to a point with r = ∞. This is
the defining property of a black hole: a region of an asymptotically flat
spacetime from which it is impossible to send a signal to infinity.

3. r = 2M is a limiting case of the outgoing radial null geodesics. By
writing down the geodesic equation in EF coordinates, one can confirm
that radial curves with r = 2M are indeed null geodesics (we missed
these above because we derived the geodesic equation in Schwarzschild
coordinates). The surface r = 2M which bounds the black hole is
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called the event horizon. It acts like a one-way membrane: things can
fall into the black hole but nothing can get out.

Black holes form during the process of gravitational collapse. A star is sup-
ported against contracting under its own gravity by pressure generated by
nuclear reactions in the star’s core. But eventually the star will use up its
nuclear ”fuel” and start to contract. Once all the nuclear fuel is spent, the
only way that gravitational self-attraction can be balanced is by some non-
thermal source of pressure (non-thermal because if we wait long enough, the
star will cool). One source of such pressure arises from the Pauli principle,
which makes a gas of cold fermions resist being compressed too much (this is
called degeneracy pressure). For example, in a white dwarf star, the degener-
acy pressure of electrons balances gravity. In a neutron star, the degeneracy
pressure of neutrons balances gravity. But one can show that there is a max-
imum mass for such stars, of around two solar masses. If a star more massive
than this undergoes gravitational collapse, then either it must shed some of
its mass in a supernova, or it will undergo complete gravitational collapse to
form a black hole. Gravitational collapse is easy to study if we have spherical
symmetry. By continuity, points on the surface of a collapsing star will follow
radial timelike curves in the Schwarzschild geometry. We can depict this on
a Finkelstein diagram:

The star will collapse and form a singularity in finite proper time as measured
by an observer on the star’s surface. Note the behaviour of the outgoing radial
null geodesics: an observer with r > 2M will never see the star to collapse
through r = 2M , instead the star will appear to freeze and quickly fade from
view (due to the large redshift as r → 2M). For this reason, black holes used
to be called frozen stars.
One might suspect that small departures from spherical symmetry would
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become amplified during the collapse and lead to a qualitatively different
picture, e.g., an explosion of the star. However, strong evidence that black
holes actually form is provided by the singularity theorem of Penrose. This
ensures that, for small departures from spherical symmetry, gravitational
collapse necessarily results in the formation of a singularity. Penrose’s cosmic
censorship hypothesis asserts that such a singularity must lie inside a black
hole. There is a lot of evidence (e.g. numerical simulations) that this is
indeed true, but no proof. This is probably the most important problem in
mathematical relativity.

35 White holes and the Kruskal extension

We defined ingoing EF coordinates using ingoing radial null geodesics. What
happens if we do the same thing with outgoing radial null geodesics? Let

u = t− r∗ (269)

so u = constant along outgoing radial null geodesics. Now introduce outgoing
Eddington-Finkelstein (u, r, θ, φ). The Schwarzschild metric becomes

ds2 = −
(

1− 2M

r

)
du2 − 2dudr + r2dΩ2 (270)

Just as for the ingoing EF coordinates, this metric and its inverse are smooth
at r = 2M and can therefore be extended to a new region r < 2M . Once
again we can define Schwarzschild coordinates in r < 2M to see that the
metric in this region is simply the Schwarzschild metric. There is a curvature
singularity at r = 0. However, this r < 2M region is not the same as the
r < 2M region in the ingoing EF coordinates. An easy way to see this
is to look at the outgoing radial null geodesics, which we saw above have
dr/dτ = 1. These propagate from the curvature singularity at r = 0, through
the surface r = 2M and then extend to large r. This is impossible for r < 2M
region we discussed above since that region is a black hole.
The r < 2M region of the outgoing EF coordinates is a white hole: the time-
reverse of a black hole. For example, one can show that no signal can be
sent from a point with r > 2M to a point with r < 2M . Any timelike curve
starting with r < 2M must pass through the surface r = 2M within finite
proper time.
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Black holes are stable objects: small perturbations of a collapsing star do
not change the outcome of gravitational collapse. Time-reversal implies that
white holes must be unstable objects. That is why they are not believed to
be relevant for astrophysics.
We have seen that the Schwarzschild spacetime can be extended in two dif-
ferent ways, revealing the existence of a black hole region and a white hole
region. How are these different regions related to each other? This is revealed
by introducing a new set of coordinates. Start in the region r > 2M . Define
Kruskal-Szekeres coordinates (U, V, θ, φ) by

U = −e−u/(4M), V = ev/(4M), (271)

so U < 0 and V > 0. Note that

UV = −er∗/(2M) = −er/(2M)
( r

2M
− 1
)

(272)

The RHS is a monotonic function of r and hence this equation determines
r(U, V ) uniquely. We also have

V

U
= −et/(2M) (273)

which determines t(U, V ) uniquely.

Exercise. Show that in Kruskal-Szekeres coordinates, the metric is

ds2 = −32M3e−r(U,V )/(2M)

r(U, V )
dUdV + r(U, V )2dΩ2 (274)

Hint. First transform the metric to coordinates (u, v, θ, φ) and then to KS
coordinates.
Let us now define the function r(U, V ) for U ≥ 0 or V ≤ 0 by (272). This
new metric and its inverse can be smoothly extended through the surfaces
U = 0 and V = 0 (which correspond to r = 2M) to new regions with U > 0
or V < 0.
Let’s consider the surface r = 2M . Equation (272) implies that either U = 0
or V = 0. Hence KS coordinates reveal that r = 2M is actually two surfaces,
that intersect at U = V = 0. Similarly, the curvature singularity at r = 0
corresponds to UV = 1, a hyperbola with two branches. This information
can be summarized on a Kruskal diagram:
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One should think of ”time” increasing in the vertical direction on this dia-
gram. Radial null geodesics are lines of constant U or V , i.e., lines at 45◦

to the horizontal. This diagram has four regions. Region I is the region we
started in, i.e., the region r > 2M of the Schwarzschild solution. Region II
is the black hole that we discovered using ingoing EF coordinates (note that
these coordinates cover regions I and II of the Kruskal diagram), Region III
is the white hole that we discovered using outgoing EF coordinates. And
region IV is an entirely new region. In this region, r > 2M and so this region
is again described by the Schwarzschild solution with r > 2M . This is a
new asymptotically flat region. It is isometric to region I: the isometry is
(U, V ) → (−U,−V ). Note that it is impossible for an observer in region I
to send a signal to an observer in region IV. If they want to communicate
then one or both of them will have to travel into region II (and then hit the
singularity).
Note that the singularity in region II appears to the future of any point.
Therefore it is not appropriate to think of the singularity as a ”place” inside
the black hole. It is more appropriate to think of it as a ”time” at which tidal
forces become infinite. The black hole region is time-dependent because, in
Schwarzschild coordinates, it is r, not t that plays the role of time. This re-
gion can be thought of as describing a homogeneous but anisotropic universe
approaching a ”big crunch”. Conversely, the white hole singularity resembles
a ”big bang” singularity.
Most of this diagram is unphysical. If we include a timelike worldline corre-
sponding to the surface of a collapsing star and then replace the region to
the left of this line by the spacetime corresponding to the star’s interior then
we get a diagram in which only regions I and II appear:

Inside the matter, we define r so that the area of each S2 is 4πr2 and r = 0
is just the origin of polar coordinates, where the spacetime is smooth.
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36 Linearized theory

The nonlinearity of the Einstein equation makes it very hard to solve. How-
ever, in many circumstances, gravity is not strong and spacetime can be
regarded as a perturbation of Minkowski spacetime. More precisely, we as-
sume our spacetime manifold is M = R4 and that there exist globally defined
”almost inertial” coordinates xµ for which the metric can be written

gµν = ηµν + hµν , ηµν = diag(−1, 1, 1, 1) (275)

with the weakness of the gravitational field corresponding to the components
of hµν being small compared to 1. The static weak field metric that we
discussed earlier is an example of such a metric. Note that we are dealing
with a situation in which we have two metrics defined on spacetime, namely
gab and the Minkowski metric ηab. The former is supposed to be the physical
metric, i.e., free particles move on geodesics of gab.
To leading order in the perturbation, the inverse metric is

gµν = ηµν − hµν , (276)

where we define
hµν = ηµρηνσhρσ (277)

To prove this, just check that gµνgνρ = δµρ to linear order in the perturbation.
Here, and henceforth, we shall raise and lower indices using the Minkowski
metric ηµν . To leading order this agrees with raising and lowering with gµν .
We shall determine the Einstein equation to first order in the perturbation
hµν .
To first order, the Christoffel symbols are

Γµνρ =
1

2
ηµσ (hσν,ρ + hσρ,ν − hνρ,σ) , (278)

the Riemann tensor is (neglecting ΓΓ terms since they are second order in
the perturbation):

Rµνρσ = ηµτ
(
∂ρΓ

τ
νσ − ∂σΓτνρ

)
=

1

2
(hµσ,νρ + hνρ,µσ − hνσ,µρ − hµρ,νσ) (279)

and the Ricci tensor is

Rµν = ∂ρ∂(µhν)ρ −
1

2
∂ρ∂ρhµν −

1

2
∂µ∂νh, (280)
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where ∂µ denotes ∂/∂xµ as usual, and

h = hµµ (281)

To first order, the Einstein tensor is

Gµν = ∂ρ∂(µhν)ρ −
1

2
∂ρ∂ρhµν −

1

2
∂µ∂νh−

1

2
ηµν (∂ρ∂σhρσ − ∂ρ∂ρh) . (282)

The Einstein equation equates this to 8πTµν (which must therefore be as-
sumed to be small, otherwise spacetime would not be nearly flat). It is
convenient to define

h̄µν = hµν −
1

2
hηµν , (283)

with inverse

hµν = h̄µν −
1

2
h̄ηµν , (h̄ = h̄µµ = −h) (284)

The linearized Einstein equation is then (exercise)

−1

2
∂ρ∂ρh̄µν + ∂ρ∂(µh̄ν)ρ −

1

2
ηµν∂

ρ∂σh̄ρσ = 8πTµν (285)

We must now discuss the gauge symmetry present in this theory. We argued
above that diffeomorphisms are gauge transformations in GR. A manifold
M with metric g and energy-momentum tensor T is physically equivalent
to M with metric φ∗(g) and energy momentum tensor φ∗(T ) if φ is a dif-
feomorphism. Now we are restricting attention to metrics of the form (275).
Hence we must consider which diffeomorphisms preserve this form. A general
diffeomorphism would lead to (φ∗(η))µν very different from diag(−1, 1, 1, 1)
and hence such a diffeomorphism would not preserve (275). However, if we
consider a 1-parameter family of diffeomorphisms φt then φ0 is the identity
map, so if t is small then φt is close to the identity and hence will have a small
effect, i.e., (φt∗(η))µν will be close to diag(−1, 1, 1, 1) and the form (275) will
be preserved. For small t, we can use the definition of the Lie derivative to
deduce that, for any tensor T (the −t is for notational convenience)

(φ−t)∗(T ) = T + tLXT +O(t2)

= T + LξT +O(t2) (286)

where Xa is the vector field that generates φt and ξa = tXa. Note that
ξa is small so we treat it as a first order quantity. If we apply this result
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to the energy-momentum tensor, evaluating in our chart xµ, then the first
term is small (by assumption) so the second term is higher order and can
be neglected. Hence the energy-momentum tensor is gauge-invariant to first
order. The same is true for any tensor that vanishes in the unperturbed
spacetime, e.g. the Riemann tensor. However, for the metric we have

(φ−t)∗(g) = g + Lξg + . . . = η + h+ Lξη + . . . (287)

where we have neglected Lξh because this is a higher order quantity (as ξ and
h both are small). Comparing this with (275) we deduce that h and h+Lξη
described physically equivalent metric perturbations. Therefore linearized
GR has the gauge symmetry h→ h + Lξη for small ξµ. In our chart xµ, we
can use (239) to write (Lξη)µν = ∂µξν + ∂νξµ and so the gauge symmetry is

hµν → hµν + ∂µξν + ∂νξµ (288)

There is a close analogy with electromagnetism in flat spacetime, where we
can introduce an electromagnetic potential Aµ, a 4-vector obeying Fµν =
2∂[µAν]. This has the gauge symmetry

Aµ → Aµ + ∂µΛ (289)

for some scalar Λ. In this case, one can choose Λ to impose the gauge
condition ∂µAµ = 0. Similarly, in linearized GR we can choose ξµ to impose
the gauge condition

∂ν h̄µν = 0. (290)

To see this, not that under the gauge transformation (288) we have

∂ν h̄µν → ∂ν h̄µν + ∂ν∂νξµ (291)

so if we choose ξµ to satisfy the wave equation ∂ν∂νξµ = −∂ν h̄µν (which we
can solve using a Green function) then we reach the gauge (290). This is
called variously Lorenz, de Donder, or harmonic gauge. In this gauge, the
linearized Einstein equation reduces to

∂ρ∂ρh̄µν = −16πTµν (292)

Hence, in this gauge, each component of h̄µν satisfies the wave equation with
a source given by the energy-momentum tensor. Given appropriate boundary
conditions, the solution can be determined using a Green function.
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We can now justify our assertion that the static weak field metric is the
unique time-independent metric produced by a weak, time-independent, non-
relativistic, source. More precisely, the ”non-relativistic” condition is that
we can choose our ”almost inertial” coordinates xµ = (t,x) so that

T00 = ρ(x), T0i ≈ 0, Tij ≈ 0 (293)

The assumption that T0i is negligible is the assumption that matter is moving
with velocities small compared to c (note that −T0i is the momentum density
measured by an observer at rest in these coordinates) and the assumption
that Tij is negligible is the assumption that stresses in matter are small
compared to its energy density. (For a perfect fluid, this is the condition
p � ρ we discussed previously.) Since the source is time-independent, it is
natural to expect the gravitational field also to be time independent in these
coordinates, so ∂ρ∂ρ → ∇2 and (292) becomes

∇2h̄00 = −16πρ, ∇2h̄0i = 0, ∇2h̄ij = 0. (294)

If we now define Φ = −(1/4)h̄00 then the first of the above equations is New-
ton’s law of gravitation (1). The unique solution of the latter two equations
that is regular everywhere and decays as x → ∞ (we expect the metric to
approach the Minkowski metric far from the source) is

h̄0i = h̄ij = 0. (295)

Calculating hµν using (284) gives

h00 = −2Φ, h0i = 0, hij = −2Φδij (296)

which is precisely the static weak field metric we discussed earlier.

37 Gravitational waves

In vacuum, the linearized Einstein equation reduces to the source-free wave
equation:

∂ρ∂ρh̄µν = 0 (297)

so the theory admits gravitational wave solutions. As usual for the wave
equation, we can build a general solution as a superposition of plane wave
solutions. So let’s look for a plane wave solution:

h̄µν(x) = Re
(
Hµνe

ikρxρ
)

(298)
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where Hµν is a constant symmetric complex matrix describing the polariza-
tion of the wave and kµ is the (real) wavevector. We shall suppress the Re
is all subsequent equations. The wave equation reduces to

kµk
µ = 0 (299)

so the wavevector kµ must be null hence these waves propagate at the speed
of light relative to the background Minkowski metric. The gauge condition
(290) gives

kνHµν = 0, (300)

i.e. the waves are transverse.

Example. As an example, consider the null vector kµ = ω(1, 0, 0, 1). Then
exp(ikµx

µ) = exp(−iω(t− z)) so this describes a wave of frequency ω prop-
agating at the speed of light in the z-direction. The transverse condition
reduces to

Hµ0 +Hµ3 = 0. (301)

Returning to the general case, the condition (290) does not eliminate all
gauge freedom. Consider a gauge transformation (288). From equation (291),
we see that this preserves the gauge condition (290) if ξµ obeys the wave
equation:

∂ν∂νξµ = 0. (302)

Hence there is a residual gauge freedom which we can exploit to simplify the
solution. Take

ξµ(x) = Xµe
ikρxρ (303)

which satisfies (302) because kµ is null. Using

h̄µν → h̄µν + ∂µξν + ∂νξµ − ηµν∂ρξρ (304)

we see that the residual gauge freedom in our case is

Hµν → Hµν + i (kµXν + kνXµ − ηµνkρXρ) (305)

Exercise. Show that the residual gauge freedom can be used to achieve

”longitudinal gauge”:
H0µ = 0 (306)
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but this still does not determine Xµ uniquely, and the freedom remains to
impose the additional ”trace-free” condition

Hµ
µ = 0. (307)

In this gauge, we have
hµν = h̄µν . (308)

Example. Return to our wave travelling in the z-direction. The longitudinal
gauge condition combined with the transversality condition (301) givesH3µ =
0. Using the trace-free condition now gives

Hµν =


0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

 (309)

where the solution is specified by the two constantsH+ andH× corresponding
to two independent polarizations. So gravitational waves are transverse and
have two possible polarizations. This is one way of interpreting the statement
that the gravitational field has two degrees of freedom per spacetime point.

How would one detect a gravitational wave? An observer could set up a
family of test particles locally. The displacement vector Sa from the observer
to any particle is governed by the geodesic deviation equation. (We are taking
Sa to be infinitesimal, i.e., what we called δsSa previously.) So we can use
this equation to predict what the observer would see. We have to be careful
here. It would be natural to write out the geodesic deviation equation using
the almost inertial coordinates and therby determine Sµ. But how would we
relate this to observations? Sµ are the components of Sa with respect to a
certain basis, so how would we determine whether the variation in Sµ arises
from variation of Sa or from variation of the basis? With a bit more thought,
one can make this approach work but we shall take a different approach.
Consider an observer following a geodesic in a general spacetime. Our ob-
server will be equipped with a set of measuring rods with which to measure
distances. At some point p on his worldline we could introduce a local iner-
tial frame with spatial coordinates X, Y, Z in which the observer is at rest.
Imagine that the observer sets up measuring rods of unit length pointing in
the X, Y, Z directions at p. Mathematically, this defines an orthonormal ba-
sis {eα} for Tp(M) (we use α to label the basis vectors because we are using
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µ for our almost inertial coordinates) where ea0 = ua (his 4-velocity) and eai
(i = 1, 2, 3) are spacelike vectors satisfying

uae
a
i = 0, gabe

a
i e
b
j = δij (310)

In Minkowski spacetime, this basis can be extended to the observer’s en-
tire worldline by taking the basis vectors to have constant components (in
an inertial frame), i.e., they do not depend on proper time τ . In particu-
lar, this implies that the orthonormal basis is non-rotating. Since the basis
vectors have constant components, they are parallelly transported along the
worldline. Hence, in curved spacetime, the analogue of this is to take the
basis vectors to be parallelly transported along the worldline. For ua, this is
automatic (the worldline is a geodesic). But for ei it gives

ub∇be
a
i = 0 (311)

As we discussed previously, if the eai are specified at any point p then this
equation determines them uniquely along the whole worldline. Furthermore,
the basis remains orthonormal because parallel transport preserves inner
products (examples sheet 2). The basis just constructed is sometimes called a
parallelly transported frame. It is the kind of basis that would be constructed
by an observer freely falling and carrying a set of measuring rods. Using such
a basis we can be sure that an increase in a component of Sa is really an
increase in the distance to the particle in a particular direction, rather than
a basis-dependent effect.
Now imagine this observer sets up a family of test particles near his world-
line. The deviation vector to any infinitesimally nearby particle satisfies the
geodesic deviation equation

ub∇b(u
c∇cSa) = Rabcdu

bucSd (312)

Contract with eaα and use the fact that the basis is parallelly transported to
obtain

ub∇b[u
c∇c(e

a
αSa)] = Rabcde

a
αu

bucSd (313)

Now eaαSa is a scalar hence the equation reduces to

d2Sα
dτ 2

= Rabcde
a
αu

bucedβS
β (314)

where τ is the observer’s proper time and Sα = eaαSa is one of the components
of Sa in the parallelly transported frame. On the RHS we’ve used Sd = edβS

β.
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So far, the discussion has been general but now let’s specialize to our gravi-
tational plane wave. On the RHS, Rabcd is a first order quantity so we only
need to evaluate the other quantities to leading order, i.e., we can evaluate
them as if spacetime were flat. Assume that the observer is at rest in the
almost inertial coordinates. To leading order, uµ = (1, 0, 0, 0) hence

d2Sα
dτ 2

≈ Rµ00νe
µ
αe

ν
βS

β (315)

Using the formula for the perturbed Riemann tensor (279) and h0µ = 0 we
obtain

d2Sα
dτ 2

≈ 1

2

∂2hµν
∂t2

eµαe
ν
βS

β (316)

In Minkowski spacetime we could take eai aligned with the x, y, z axes respec-
tively, i.e., eµ1 = (0, 1, 0, 0), eµ2 = (0, 0, 1, 0) and eµ3 = (0, 0, 0, 1). We can use
the same results here because we only need to evaluate eµα to leading order.
Using h0µ = h3µ = 0 we then have

d2S0

dτ 2
=
d2S3

dτ 2
= 0 (317)

to this order of approximation. Hence the observer sees no relative accelera-
tion of the test particles in the z-direction, i.e, the direction of propagation
of the wave. Let the observer set up initial conditions so that S0 and its first
derivatives vanish at τ = 0. Then S0 will vanish for all time. If the derivative
of S3 vanishes initially then S3 will be constant. The same is not true for the
other components.
We can choose our almost inertial coordinates so that the observer has co-
ordinates xµ ≈ (τ, 0, 0, 0) (i.e. t = τ to leading order along the observer’s
worldline). For a + polarized wave we then have

d2S1

dτ 2
=

1

2
ω2|H+| cos(ωτ−α)S1,

d2S2

dτ 2
= −1

2
ω2|H+| cos(ωτ−α)S2 (318)

where we have replaced t by τ in ∂2hµν/∂t
2 and α = argH+. Since H+ is

small we can solve this perturbatively: the leading order solution is S1 = S̄1,
a constant (assuming that we set up initial condition so that the particles are
at rest to leading order). Similarly S2 = S̄2. Now we can plug these leading
order solutions into the RHS of the above equations and integrate to deter-
mine the solution up to first order (again choosing constants of integration
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so that the particles would be at rest in the absense of the wave)

S1(τ) ≈ S̄1

(
1− 1

2
|H+| cos(ωτ − α)

)
, S2(τ) ≈ S̄2

(
1 +

1

2
|H+| cos(ωτ − α)

)
(319)

This reveals that particles are displaced outwards in the x-direction whilst
being displaced inwards in the y-direction, and vice-versa. S̄1 and S̄2 give
the average displacement. If the particles are arranged in the xy plane with
S̄2

1 + S̄2
2 = R2 then they form a circle of radius R when ωτ = α + π/2. This

will be deformed into an ellipse, then back to a circle, then an ellipse again:

Exercise. Show that the corresponding result for a × polarized wave is the
same, just rotated through 45◦:

There is an ongoing experiment effort to detect gravitational waves. The
effect just mentioned is the basis for detection efforts. For example, the
LIGO observatory has two perpendicular tunnels, each 4 km long. There
are test masses (analogous to the particles above) at the end of each arm
(tunnel) and where the arms meet. A beam splitter is attached to the test
mass where the arms meet. A laser signal is split and sent down each arm,
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where it reflects off mirrors attached to the test masses at the ends of the
arms. The signals are recombined and interferometry used to detect whether
there has been any change in the length difference of the two arms. The effect
that is being looked for is tiny: plausible sources of gravitational waves give
H+, H× ∼ 10−21 so the relative length change of each arm is δL/L ∼ 10−21.

38 The quadrupole formula

Let’s return to the linearized Einstein equation with matter:

∂ρ∂ρh̄µν = −16πTµν (320)

Since each component of h̄µν satisfies the inhomogeneous wave equation, the
solution can be solved using the same retarded Green function that one uses
in electromagnetism:

h̄µν(t,x) = 4

∫
d3x′

Tµν(t
′,x′)

|x− x′|
t′ = t− |x− x′| (321)

where |x− x′| is calculated using the Euclidean metric. In what follows, we
shall consider only the spatial components of h̄µν , i.e., h̄ij. Other components
can be obtained from the gauge condition (290), which gives

∂0h̄0i = ∂jh̄ji, ∂0h̄00 = ∂jh̄0j (322)

Given h̄ij, the first equation can be integrated to determine h̄0i and the
second can then be integrated to determine h̄00. Assume that the matter is
confined to a compact region near the origin. Then, far from the source we
have |x′| � |x| = r and hence

h̄ij(t,x) ≈ 4

r

∫
d3x′ Tij(t

′,x′) t′ = t− r (323)

The integral can be evaluated as follows. Since the matter is compactly
supported, we can freely integrate by parts and discard surface terms. We can
also use energy-momentum conservation, which to this order is just ∂νT

µν =
0. Let’s drop the primes on the coordinates in the integral for now.∫

d3xT ij =

∫
d3x

[
∂k(T

ikxj)− (∂kT
ik)xj

]
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= −
∫
d3x (∂kT

ik)xj integration by parts

=

∫
d3x(∂0T

i0)xj conservation law

= ∂0

∫
d3xT 0ixj (324)

We can now symmetrize this equation on ij to get∫
d3xT ij = ∂0

∫
d3xT 0(ixj)

= ∂0

∫
d3x

[
1

2
∂k
(
T 0kxixj

)
− 1

2
(∂kT

0k)xixj
]

= −1

2
∂0

∫
d3x (∂kT

0k)xixj integration by parts

=
1

2
∂0

∫
d3x (∂0T

00)xixj conservation law

=
1

2
∂0∂0

∫
d3xT 00xixj

=
1

2
Ïij(t) (325)

where

Iij(t) =

∫
d3xT00(t,x)xixj (326)

(Note that T00 = T 00 and Tij = T ij to leading order.) Hence we have

h̄ij(t,x) ≈ 2

r
Ïij(t− r) (327)

Iij is the second moment of the energy density. It is a tensor in the Cartesian
sense, i.e., it transforms in the usual way under rotations of the coordinates
xi. (The zeroth moment is the total energy in matter

∫
d3xT00, the first

moment is the energy dipole
∫
d3xT00x

i.) It is closely related to the energy
quadrupole tensor, which is the traceless part of Iij

Qij = Iij −
1

3
Ikkδij (328)

We see that the gravitational waves arise when Iij varies in time. Gravita-
tional waves carry energy away from the souce. Calculating this is subtle

101



because we have seen that there is no local notion of energy density for the
gravitational field. However, one can define a notion of total energy (of matter
and the gravitational field) for an asymptotically flat spacetime. Moreover,
one can calculate the rate of change of this energy at infinity. It turns out
to be negative. The interpretation is that energy is carried away by gravita-
tional waves. The rate of decrease can be interpreted as the power radiated
in gravitational waves.
The qualitative form of the expression for this power can be understood as
follows. By analogy with electromagnetism, we would expect the power radi-
ated across a large sphere of radius r to be quadratic in first time derivatives
of the field h̄µν at radius r. Hence it will be quadratic in the third time
derivative of Iij. The power should be a scalar (in the Cartesian sense) and
therefore must have the form

P = α
...

I ij
...

I ij +β(
...

I kk)
2 (329)

We can appeal to Birkhoff’s theorem, which tells us that there can be no
gravitational radiation if the source is spherically symmetric. A spherically
symmetric source has Iij ∝ δij. In this case, we should find P = 0. This

implies 3α + 9β = 0. Our formula reduces to P = α
...

Qij

...

Qij. A more careful
determines the coefficient, with the result

P (t) =
1

5

( ...
Qij

...

Qij

)
t−r

(330)

This is the quadrupole formula for energy loss via gravitational wave emission.
Consider an asymmetric body of mass M and characteristic size R rotating
with angular velocity Ω. On dimensional grounds we have Qij ∼ MR2 and
...

Qij∼ MR2Ω3. Hence we can estimate the power emitted in gravitational
waves as P ∼M2R4Ω6. Reinstating factors of G and c, this is GM2R4Ω6/c5.
As the Earth orbits the Sun, it emits gravitational waves but the power
emitted is tiny: about 200 watts. However, for a binary system (a pair of
stars or black holes orbiting their common centre of mass), it is much larger.
If the objects in the binary are very compact (e.g. neutron stars or black
holes) and the radius of the orbit is small (so Ω is large) then the power
emitted in gravitational radiation can be comparable to the power emitted
by the Sun in electromagnetic radiation.
The quadrupole formula has been verified experimentally. In 1974, Hulse and
Taylor identifed a binary pulsar. This is a neutron star binary in which one of
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the stars is a pulsar, i.e., it emits a beam of radio waves in a certain direction.
The star is rotating very rapidly and the beam (which is not aligned with the
rotation axis) periodically points in our direction. Hence we receive pulses of
radiation from the star. The period between successive pulses (about 0.05s)
is very stable and has been measured to very high accuracy. Therefore it
acts like a clock that we can observe from Earth. Using this clock we can
determine the orbital period (about 7.75h) of the binary system, again with
good accuracy. The system loses energy through emission of gravitational
waves. This makes the period of the orbit decrease by about 10µs per year.
This small effect has been measured and the result confirms the quadrupole
formula to an accuracy of 0.3% (the accuracy increases the longer the sys-
tem is observed). This is very strong indirect evidence for the existence of
gravitational waves, for which Hulse and Taylor received the Nobel Prize in
1993.

39 Integration on manifolds

The Einstein equation can be obtained by extremizing an action. To under-
stand this, we first need to discuss how to integrate on a manifold M . The
best way of doing this is to introduce differential forms but for our purposes
this is not necessary.
Let φ : O → U be a chart with coordinates xµ and f : M → R. How would
we define the integral of f over O? One definition would be∫

U
dnxf(x) (331)

where, as usual, we are writing f(x) as an abbreviation for f(φ−1(x)). How-
ever, this does not work because if φ′ : O → U ′ is another chart, with
coordinates x′µ then we would have∫

U ′
dnx′f(x′) =

∫
U
dnx||J ||f(x), (332)

where ||J || is the Jacobian:

||J || = det Jµν , Jµν =
∂x′µ

∂xν
(333)
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Since these integrals are not equal, our definition is chart-dependent, which
is unsatisfactory. There is a simple solution to this problem if our manifold
has a metric. The tensor transformation law gives

g′µν(x
′) = (J−1)ρµ(J−1)σν gρσ(x) (334)

hence if we define the (non-scalar) quantity

g = det gµν (335)

then
g′ = ||J ||−2g ⇒

√
|g′| = ||J ||−1

√
|g| (336)

Hence we have
dnx′

√
|g′| = dnx

√
|g| (337)

It follows that the definition∫
O
f ≡

∫
U
dnx
√
|g|f(x) (338)

is chart-independent so this is the definition we shall adopt. Actually, there
is a subtlety: the above works only if ||J || is positive.

Definition. An oriented manifold is one with an atlas for which ||J || is
positive for all pairs of coordinate charts.

Familiar examples such as Rn or Sn are oriented. We assume that M is
oriented henceforth.

How do we extend our definition to all of M? Skipping some technical details,
the idea is to choose an atlas with charts φα : Oα → Uα and a ”partition of
unity”, i.e., a set of functions hα : M → [0, 1] such that hα(p) = 0 if p /∈ Oα,
and

∑
α hα(p) = 1 for all p. We then define∫

M

f ≡
∑
α

∫
Oα
hαf (339)

It can be shown that this definition is independent of the choice of atlas and
partition of unity.

From now on, we shall adopt the following common notation∫
M

dnx
√
|g| f ≡

∫
M

f (340)
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This is an abuse of notation because the LHS refers to coordinates xµ but
M might not be covered by a single chart. It has the advantage of making
manifest the fact that our integrals depend on the metric tensor.

Definition. The volume ofM is obtained by setting f = 1: V =
∫
M
dnx
√
|g|.

We shall need the generalization of the divergence theorem to an arbitrary
manifold. To do this, we need to introduce the notion of a manifold with
boundary:

Definition. A manifold with boundary M is defined in the same way as a
manifold except that charts are maps φα : Oα → Uα where now Uα is an open
subset of 1

2
Rn = {(x1, . . . , xn) ∈ Rn : x1 ≤ 0}. The boundary of M , denoted

∂M , is the set of points for which x1 = 0. This is a manifold of dimension
n− 1 with coordinate charts (x2, . . . xn). It is oriented if M is oriented.

Consider a curve in ∂M with parameter t and tangent vector X. Then
x1(t) = 0 so

dx1(X) = X(x1) =
dx1

dt
= 0. (341)

Hence dx1(X) vanishes for any X tangent to ∂M so dx1 is normal to ∂M .
Any other normal to ∂M will be proportional to dx1. We can construct a
unit normal by dividing by the norm of dx1:

na =
±(dx1)a√

±gbc(dx1)b(dx1)c
⇒ gabnanb = ±1 (342)

One can show that this is chart independent. Here we choose the + sign if
dx1 is spacelike and the − sign if dx1 is timelike (+ if the metric is Rieman-
nian). The sign in the numerator is in order to get the correct sign in the
divergence theorem. If dx1 is null anywhere on ∂M then one has to express
the divergence theorem differently (using differential forms).
There is an obvious map ∂M →M in which we send a point in ∂M to itself.
We can use this map to pull-back the metric on M to define a metric on
∂M . We can then define integration on ∂M using this metric. Finally we
can state the divergence theorem:∫

M

dnx
√
|g| ∇aX

a =

∫
∂M

dn−1x
√
|h|naXa (343)

where Xa is a vector field on M , ∇ is the Levi-Civita connection, and h
denotes the determinant of the metric on ∂M . naX

a is a scalar in M so it
can be pulled back to ∂M , this is the integrand on the RHS.
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40 Scalar field action

You are familiar with the idea that the equation of motion of a point particle
can be obtained by extremizing an action. You may also know that the same
is true for fields in Minkowski spacetime. The same is true in GR. To see
how this works, consider first a scalar field, i.e., a function Φ : M → R and
define the action as the functional

S[Φ] =

∫
M

d4x
√
−gL (344)

where L is the Lagrangian:

L = −1

2
gab∇aΦ∇bΦ− V (Φ) (345)

and V (Φ) is called the scalar potential. Now consider a variation Φ →
Φ + δΦ for some function δΦ that vanishes on ∂M (in an asymptotically flat
spacetime, ∂M will be ”at infinity”). The change in the action is (working
to linear order in δΦ)

δS = S[Φ + δΦ]− S[Φ]

=

∫
M

d4x
√
−g
(
−gab∇aΦ∇bδΦ− V ′(Φ)δΦ

)
=

∫
M

d4x
√
−g [−∇a (δΦ∇aΦ) + δΦ∇a∇aΦ− V ′(Φ)δΦ]

=

∫
∂M

d3x
√
|h| δΦna∇aΦ +

∫
M

d4x
√
−g (∇a∇aΦ− V ′(Φ)) δΦ

=

∫
M

d4x
√
−g (∇a∇aΦ− V ′(Φ)) δΦ (346)

Note that we have used the divergence theorem to ”integrate by parts”. An
alternative way of writing the final expression is

δS

δΦ
=
√
−g (∇a∇aΦ− V ′(Φ)) (347)

Demanding that δS vanishes for arbitrary δΦ gives us the equation of motion
δS/δΦ = 0, i.e.,

∇a∇aΦ− V ′(Φ) = 0. (348)

The particular choice V (Φ) = 1
2
m2Φ2 gives the Klein-Gordon equation.
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41 The Einstein-Hilbert action

For the gravitational field, we seek an action of the form

S[g] =

∫
M

d4x
√
−gL (349)

where L is a scalar constructed from the metric. An obvious choice for the
Lagrangian is L ∝ R. This gives the Einstein-Hilbert action

SEH [g] =
1

16π

∫
M

d4x
√
−gR (350)

where the prefactor is included for later convenience. The idea is that we
regard our manifoldM as fixed (e.g. R4) and gab is determined by extremizing
S[g]. In other words, we consider two metrics gab and gab + δgab and demand
that S[g + δg]− S[g] should vanish to linear order in δgab. Note that δgab is
the difference of two metrics and hence is a tensor field.
We need to work out what happens to

√
−g and R when we vary gµν . Recall

the formula for the determinant ”expanding along the µth row”:

g =
∑
ν

gµν∆
µν (351)

where we are suspending the summation convention, µ is any fixed value,
and ∆µν is the cofactor matrix, whose µν element is (−1)µ+ν times the de-
terminant of the matrix obtained by deleting row µ and column ν from the
metric. Note that ∆µν is independent of the µν element of the metric. Hence

∂g

∂gµν
= ∆µν = ggµν (352)

where on the RHS we recall the formula for the inverse matrix gµν in terms
of the cofactor matrix. We can use this formula to determine how g varies
under a small change δgµν in gµν (reinstating the summation convention):

δg =
∂g

∂gµν
δgµν = ggµνδgµν = ggabδgab (353)

(we can use abstract indices in the final equality since gabδgab is a scalar) and
hence

δ
√
−g =

1

2

√
−g gabδgab (354)
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Next we need to evaluate δR. To this end, consider first the change in the
Christoffel symbols. δΓµνρ is the difference between the components of two
connections (i.e. the Levi-Civita connections associated to gab + δgab and
gab). Since the difference of two connections is a tensor, it follows that δΓµνρ
are components of a tensor δΓabc. These components are easy to evaluate if
we introduce normal coordinates at p for the unperturbed connection: at p
we have gµν,ρ = 0 and Γµνρ = 0. For the perturbed connection we therefore
have, at p, (to linear order)

δΓµνρ =
1

2
gµσ (δgσν,ρ + δgσρ,ν − δgνρ,σ)

=
1

2
gµσ (δgσν;ρ + δgσρ;ν − δgνρ;σ) (355)

In the second equality, the semi-colon denotes a covariant derivative with
respect to the Levi-Civita connection associated to gab. The two expressions
are equal because Γ(p) = 0. The LHS and RHS are tensors so this is a basis
independent result hence we can use abstract indices:

δΓabc =
1

2
gad (δgdb;c + δgdc;b − δgbc;d) (356)

p is arbitrary so this result holds everywhere.

Now consider the variation of the Riemann tensor. Again it is convenient to
use normal coordinates at p, so at p we have (using δ(ΓΓ) ∼ ΓδΓ = 0 at p)

δRµ
νρσ = ∂ρδΓ

µ
νσ − ∂σδΓµνρ

= ∇ρδΓ
µ
νσ −∇σδΓ

µ
νρ (357)

where ∇ is the Levi-Civita connection of gab. Once again we can immediately
replace the basis indices by abstract indices:

δRa
bcd = ∇cδΓ

a
bd −∇dδΓ

a
bc (358)

and p is arbitrary so the result holds everywhere. Contracting gives the
variation of the Ricci tensor:

δRab = ∇cδΓ
c
ab −∇bδΓ

c
ac (359)

Finally we have

δR = δ(gabRab) = gabδRab + δgabRab (360)
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where δgab is the variation in gab (not the result of raising indices on δgab).
Using δ(gµρg

ρν) = δ(δνµ) = 0 it is easy to show (exercise)

δgab = −gacgbdδgcd (361)

Putting everything together, we have

δR = −gacgbdRabδgcd + gab (∇cδΓ
c
ab −∇bδΓ

c
ac)

= −Rabδgab +∇c(g
abδΓcab)−∇b(g

abδΓcac)

= −Rabδgab +∇aX
a (362)

where
Xa = gbcδΓabc − gabδΓcbc (363)

Hence the variation of the Einstein-Hilbert action is

δSEH =
1

16π

∫
M

d4xδ(
√
−g R)

=
1

16π

∫
M

d4x
√
−g
(

1

2
Rgabδgab −Rabδgab +∇aX

a

)
(364)

The final term can be converted to a surface term on ∂M using the divergence
theorem. If we assume that δgab has support in a compact region that doesn’t
intersect ∂M then this term will vanish (because vanishing of δgab and its
derivative on ∂M implies that Xa will vanish on ∂M). Hence we have

δSEH =
1

16π

∫
M

d4x
√
−g
(
−Gab

)
δgab (365)

where Gab is the Einstein tensor. Equivalently:

δSEH
δgab

= − 1

16π

√
−gGab (366)

Hence extremization of SEH reproduces the vacuum Einstein equation.

Exercise. Show that the vacuum Einstein equation with cosmological con-
stant is obtained by extremizing

SEHΛ =
1

16π

∫
M

d4x
√
−g (R− 2Λ) (367)

Lovelock showed that the Lagrangian here is the most general scalar that
can be constructed from the metric and at most two derivatives.
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42 Energy momentum tensor

Next we consider the action for matter. We assume that this is given in
terms of the integral of a scalar Lagrangian:

Smatter =

∫
d4x
√
−gLmatter (368)

here Lmatter is a function of the matter fields (assumed to be tensor fields),
their derivatives, the metric and its derivatives. An example is given by the
scalar field Lagrangian discussed above. We define the energy momentum
tensor by

T ab =
2√
−g

δSmatter

δgab
(369)

in other words, under a variation in gab we have (after integrating by parts
using the divergence theorem to eliminate derivatives of δgab if present)

δSmatter =
1

2

∫
M

d4x
√
−gT abδgab (370)

This definition clearly makes T ab symmetric.

Example. Consider the scalar field action we discussed previously. Using
the results for δ

√
−g and δgab derived above we have, under a variation of

gab:

δS =

∫
M

d4x
√
−g
[

1

2
∇aΦ∇bΦ +

1

2

(
−1

2
gcd∇cΦ∇dΦ− V (Φ)

)
gab
]
δgab

(371)
Hence

T ab = ∇aΦ∇bΦ +

(
−1

2
gcd∇cΦ∇dΦ− V (Φ)

)
gab (372)

If we define the total action to be SEH +Smatter then under a variation of gab
we have

δ

δgab
(SEH + Smatter) =

√
−g
(
− 1

16π
Gab +

1

2
T ab
)

(373)

and hence demanding that SEH + Smatter be extremized under variation of
the metric gives the Einstein equation

Gab = 8πTab (374)
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How do we know that our definition of Tab gives a conserved tensor? It follows
from the fact that Smatter is diffeomorphism invariant. In more detail, diffeo-
morphisms are a gauge symmetry so the total action S = SEH+Smatter should
be diffeomorphism invariant in the sense that S[g,Φ] = S[φ∗(g), φ∗(Φ)] where
Φ denotes the matter fields and φ is a diffeomorphism. The Einstein-Hilbert
action alone is diffeomorphism invariant (because a diffeomorphism has the
same effect as a change of coordinates, and we’ve defined integration of a
scalar on M in a manifestly coordinate-independent way). Hence Smatter also
must be diffeomorphism invariant. The easiest way of ensuring this is to
take it to be the integral of a scalar Lagrangian as we assumed above. Now
consider the effect of an infinitesimal diffeomorphism. As we saw when dis-
cussing linearized theory (eq (287)), an infinitesimal diffeomorphism shifts
gab by

δgab = Lξgab = ∇aξb +∇bξa (375)

Matter fields also transform according to the Lie derivative (eq (286)), e.g.,
for a scalar field:

δΦ = LξΦ = ξa∇aΦ (376)

Let’s consider this scalar field case in detail. Assume that the matter La-
grangian is an arbitrary scalar constructed from Φ, the metric, and arbi-
trarily many of their derivatives (e.g. there could be a term of the form
∇a∇bΦ∇a∇bΦ or RΦ2). Under an infinitesimal diffeomorphism,

δSmatter =

∫
M

d4x

(
δSmatter

δΦ
δΦ +

δSmatter

δgab
δgab

)
=

∫
M

d4x

(
δSmatter

δΦ
ξb∇bΦ +

1

2

√
−gT abδgab

)
(377)

The second term can be written∫
M

d4x
√
−gT ab∇aξb =

∫
M

d4x
√
−g
[
∇a

(
T abξb

)
−
(
∇aT

ab
)
ξb
]

= −
∫
M

d4x
√
−g
(
∇aT

ab
)
ξb (378)

where we assume that ξb vanishes on ∂M so the total derivative can be
discarded. Now diffeomorphism invariance implies that δSmatter must vanish
for arbitrary ξb. Hence we must have

δSmatter

δΦ
∇bΦ−

√
−g∇aT

ab = 0. (379)

111



Hence we see that if the scalar field equation of motion (δSmatter/δΦ = 0) is
satisfied then

∇aT
ab = 0. (380)

This is a special case of a very general result. Diffeomorphism invariance
plus the equations of motion for the matter fields implies energy-momentum
tensor conservation. It applies for a matter Lagrangian constructed from
tensor fields of any type (the matter fields), the metric, and arbitrarily many
derivatives of the matter fields and metric.
An identical argument applied to the Einstein-Hilbert action leads to the
contracted Bianchi identity (exercise):

∇aG
ab = 0. (381)

Hence the contracted Bianchi identity is equivalent to diffeomorphism invari-
ance of the Einstein-Hilbert action.

43 Spaces of constant curvature

Definition. A manifold M with metric g has constant curvature if

Rabcd = 2Kga[cgd]b K = constant (382)

Examples.

1. Sn with the round metric of radius a > 0 is the subset of Rn+1 given
by

(x1)2 + . . .+ (xn+1)2 = a2 (383)

and the metric is the one induced by pulling back the Euclidean metric
on Rn+1. This satisfies (382) with K = 1/a2. In detail, consider n = 3
and paramerize S3 by

x1 = a sinχ sin θ cosφ, x2 = a sinχ sin θ sinφ

x3 = a sinχ cos θ, x4 = a cosχ (384)

where 0 < χ, θ < π, 0 < φ < 2π. Pulling back the Euclidean metric
using (224) gives the round metric of radius a on S3:

ds2 = a2
[
dχ2 + sin2 χ

(
dθ2 + sin2 θ dφ2

)]
(385)
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These coordinates do not cover all of S3 but, just as for S2, one can
introduce another similar chart to cover the places where χ or θ is 0 or
π or φ is 0 or 2π.

2. Consider Rn+1 with Minkowski metric

ds2 = −(dx0)2 + (dx1)2 + . . . (dxn)2 (386)

Now consider the surface (a > 0)

−(x0)2 + (x1)2 + . . . (xn)2 = −a2 (387)

This is a double sheeted hyperboloid:

Consider one sheet of this hyperboloid, which as a manifold is just Rn,
and the metric induced by pulling back the Minkowski metric. This
gives a Riemannian metric called the hyperbolic metric of radius a.
Rn with this metric is called hyperbolic space Hn. This satisfies (382)
with K = −1/a2. In detail, for n = 3 parameterize H3 as (check this
satisfies (387))

x0 = a coshχ, x1 = a sinhχ sin θ cosφ,

x2 = a sinhχ sin θ sinφ, x3 = a sinχ cos θ (388)

where χ > 0, 0 < θ < π and 0 < φ < 2π. Pulling back the Minkowski
metric gives

ds2 = a2
[
dχ2 + sinh2 χ

(
dθ2 + sin2 θ dφ2

)]
(389)

(χ, θ, φ) are analogous to spherical polar coordinates in Euclidean space.
One can introduce new charts to cover places where χ = 0, θ = 0, π or
φ = 0, 2π.
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3. On S3 set r = sinχ ∈ (0, 1) and on H3 set r = sinhχ ∈ (0,∞). The
metric becomes

ds2 = a2

[
dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)]
(390)

where k = +1 for S3, k = −1 for H3 and k = 0 gives 3d Euclidean
space.

Theorem. If (M1, g1) and (M2, g2) are n-dimensional with metrics of the
same signature, and have constant curvature with the same value for K then
they are locally isometric: for any p ∈M1 there exists a neighbourhood O of
p and an isometry φ : O → O′ for some O′ ⊂M2.

Corollary. A Lorentzian manifold with vanishing Riemann tensor is lo-
cally isometric to Minkowski spacetime. A constant curvature Riemannian
manifold is locally isometric to
Sn with round metric of radius a =

√
1/K if K > 0

Rn with Euclidean metric if K = 0

Rn with hyperbolic metric of radius a =
√
−1/K if K < 0

Example. Consider the 2d manifold R×S1 (an infinite cylinder) with metric
ds2 = dx2 + dθ2 where x is a coordinate on R and θ is a coordinate on S1.
This metric is flat and hence constant curvature. The manifold is locally, but
not globally, isometric to Euclidean space.

Remark. Consider a 4d Lorentzian manifold of constant positive curvature.
Contracting (382) gives

Rab = 3Kgab R = 12K ⇒ Gab = −3Kgab (391)

Hence such a manifold satisfies the vacuum Einstein equation with non-
vanishing cosmological constant Λ = 3K.

44 De Sitter Spacetime

Consider R5 with Minkowski metric

ds2 = −(dx0)2 + (dx1)2 + . . . (dx4)2 (392)
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Now consider the surface defined by

−(x0)2 + (x1)2 + . . . (x4)2 = L2 (393)

where L > 0. This is a 1-sheeted hyperboloid:

The pull-back of the Minkowski metric to this surface is called the de Sitter
metric of radius L. The surface with this metric is called de Sitter spacetime.

Definition. A manifold with metric is homogeneous if, for any p, q ∈ M
there exists an isometry φ such that φ(p) = q.

Remark. A homogeneous spacetime is the same everywhere. There is no
way of distinguishing one point from any other. Sn with round metric, hyper-
bolic space, Euclidean space and Minkowski spacetime are all homogeneous.

Proposition. De Sitter spacetime is homogeneous.
Proof. Consider a 5d Lorentz transformation Λ : R5 → R5, xα 7→ Λα

βx
β.

This is an isometry of the 5d Minkowski metric η: Λ∗(η) = η. Let M denote
the hyperboloid and ι denote the inclusion map which sends a point on M to
the corresponding point in R5. Since Λ preserves ηαβdx

αdxβ, is also preserves
ηαβx

αxβ and hence the equation defining M is invariant under Λ. Therefore
Λ maps points on M to points on M in a smooth invertible way, hence Λ
defines a diffeomorphism Λ̃ : M → M . By definition we have ι ◦ Λ̃ = Λ ◦ ι.
The metric on M is the pull-back of η: g = ι∗(η). Hence we have

Λ̃∗(g) = Λ̃∗(ι∗(η)) = (ι ◦ Λ̃)∗(η) = (Λ ◦ ι)∗(η) = ι∗(Λ∗(η)) = ι∗(η) = g (394)

Hence Λ̃ is an isometry of g. M can be viewed as the set of spacelike vectors of
norm L in R5. Any two such vectors are related by a Lorentz transformation
Λ. Hence any two points of M are related by an isometry Λ̃.
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Remark. It can be shown that these isometries are the only (continuous)
isometries of de Sitter spacetime. Hence the full isometry group is the same
as the group of Lorentz transformations of 5d Minkowski spacetime. This
group is denoted SO(4, 1). 5d Lorentz transformations correspond to a fam-
ily of Killing vector fields specified by a constant antisymmetric matrix (see
examples sheet 3 for the 4d case) and hence have 10 independent parameters.
It follows that SO(4, 1) has 10 independent parameters, so de Sitter space-
time has 10 linearly independent Killing vector fields, just like 4d Minkowski
spacetime: it is maximally symmetric. (A n dimensional manifold with met-
ric is maximally symmetric if there are n(n+1)/2 linearly independent Killing
vector fields.)
We can introduce coordinates (t, χ, θ, φ) on the hyperboloid as follows:

x0 = L sinh(t/L), x1 = L cosh(t/L) sinχ sin θ cosφ,

x2 = L cosh(t/L) sinχ sin θ sinφ, x3 = L cosh(t/L) sinχ cos θ,

x4 = L cosh(t/L) cosχ (395)

Using these coordinates, the de Sitter metric is (exercise)

ds2 = −dt2 + L2 cosh2(t/L)
(
dχ2 + sin2 χdΩ2

)
= −dt2 + L2 cosh2(t/L) dΩ2

3 (396)

where dΩ2
3 is the round metric on S3 of unit radius (a = 1). As a manifold,

our surface is R × S3 where t is a coordinate on R. The t coordinate is
globally defined and (χ, θ, φ) are the S3 coordinates we defined earlier. These
coordinates are called global coordinates for de Sitter spacetime. A surface
of constant t is a S3 of radius L cosh t/L. The radius of the S3 increases
with t if t > 0. In this sense, de Sitter spacetime describes an expanding
universe (contracting if t < 0). However, this is an artifact of our choice of
coordinates: all points in de Sitter spacetime are equivalent.
The de Sitter metric is a metric of constant curvature with K = 1/L2 and
hence it solves the Einstein equation with

Λ =
3

L2
(397)

It follows from the theorem above that any other 4d spacetime with constant
positive curvature must be locally isometric to de Sitter spacetime. We shall
see that current data suggests that our Universe will approach de Sitter
spacetime in the far future.
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Writing out the geodesic deviation equation in a parallelly transported frame
(314), and using the constant curvature condition gives

d2S0

dτ 2
= 0,

d2Si
dτ 2

=
1

L2
Si. (398)

If an observer sets up test particles so that they are initially at rest relative
to him (dSα/dτ = 0 at τ = 0) then their proper distance from him increases
exponentially: Si = Si(0) cosh(τ/L).

Exercise. Show that there is a family of timelike geodesics in de Sitter
spacetime given by

t = τ, χ, θ, φ = constant (399)

where τ is proper time. Show that there is a family of null geodesics with

χ = constant± 2 tan−1 et/L, θ, φ = constant (400)

Remark. Any timelike or null geodesic can be mapped to one of these by
acting with an isometry. One way to prove this is to argue that one can
find an isometry that maps a point on a geodesic and the tangent vector to
the geodesic at that point to the corresponding quantities at, say, τ = 0 on
one of the above geodesics. From uniqueness of the solution to the geodesic
equation and the fact that isometries map geodesics to geodesics, it follows
that the full geodesic must coincide with one of the above.

The easiest way to understand the global structure of de Sitter space is to
introduce the notion of a Penrose diagram. Consider two Lorentzian metrics
on a manifold M : the physical spacetime metric gab and an unphysical metric
ĝab related as follows

ĝab = Ω2gab (401)

where Ω is a positive function on M . The metric ĝab is said to be related
to gab by a conformal transformation. Note that the lightcones defined with
respect to ĝab are the same as those defined with respect to gab i.e., they
agree on which vectors are timelike, null and spacelike. Hence there exists a
timelike or null curve connecting two points in (M, g) iff there exists such a
curve between then same points in (M, ĝ). We say that gab and ĝab have the
same causal structure.
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The idea is to choose the function Ω to make the causal structure of (M, ĝ)
obvious. Let’s use de Sitter spacetime as an example. Start by writing the
de Sitter metric as

ds2 = L2 cosh2(t/L)

[
− dt2

L2 cosh2(t/L)
+ dΩ2

3

]
(402)

Now define a new ”conformal” time coordinate η

η = 2 tan−1 et/L ⇒ dη =
dt

L cosh(t/L)
(403)

hence η ∈ (0, π). Now L2 cosh2(t/L) = 1/ sin2 η and hence

ds2 =
1

sin2 η

(
−dη2 + dΩ2

3

)
(404)

Now choosing
Ω = sin η (405)

makes the unphysical metric very simple:

ĝ = −dη2 + dΩ2
3 (406)

In this metric, there is nothing to stop us from extending η to ±∞. The
resulting spacetime is called the Einstein static universe. The spacetime
manifold is R× S3 in which the time direction is R. Note that the metric is
independent of the time coordinate η, i.e., ∂/∂η is a Killing vector field. The
above analysis shows that de Sitter spacetime is conformal to the portion
0 < η < π of the Einstein static universe. If we suppress the S2 directions
parameterized by θ, φ we can draw this as:

In this diagram, we’re depicting S3 to S1 owing to our inability to sketch 4d
manifolds.
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Note that Ω = 0 at η = 0, π, i.e., at t = ±∞. One can check that t = ±∞
really is ”at infinity” in de Sitter spacetime, in the sense that any timelike
or null geodesic reaches t = ±∞ in the limit of infinite affine parameter.
Hence the surfaces η = 0, π in the Einstein static universe correspond to past
and future infinity in de Sitter spacetime. We denote these surfaces as I−
and I+. Note that they are 3-spheres. By choosing Ω appropriately we have
”conformally compactified” the spacetime, mapping points at infinity in the
original spacetime to points in the interior of the new spacetime.
If we flatten the above diagram and just plot the (η, χ) plane then we obtain
the Penrose diagram for de Sitter spacetime:

Each point on this diagram represents a S2 of area 4π sin2 χ/ sin2 η. Note that
null curves with constant (θ, φ) have dη2 = dχ2, i.e., χ = const±η (these are
the geodesics (400)) and hence are straight lines at 45◦ to the horizontal in
this diagram. These define ”light cones” at each point of the diagram. All
other timelike or null curves must have tangent vectors lying inside the light
cone at each point. (Null geodesics which have non-trivial velocity in the θ
or φ directions would appear timelike if we plotted their trajectories in the
(η, χ) plane.) Timelike and null curves start at I− and end at I+.
Consider an observer, Alice, in de Sitter spacetime. By acting with an isom-
etry, we can assume that her worldline is the timelike geodesic with χ = 0,
t = τ , i.e., the left edge of the Penrose diagram. Consider the point p on the
wordline of A. Because nothing can travel faster than light, the only part
of the spacetime from which A could have received a signal by the time she
reaches p is the shaded region:
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The boundary of this region is the surface η = ηp − χ. This region is called
the past light cone of p. It is the same for all observers at p. To see this,
note that if A can receive a signal from a point q before, or at, p then she
can pass it on to any other observer at p. In this way, a signal has travelled
from q to the other observer.
Consider the worldine of another observer, Bob, shown. It lies outside the
past light cone of p. Hence there is no way that Alice could determine whether
or not Bob exists by the time she reaches p. Constrast this with the situation
in Minkowski spacetime where, if Bob sends a light signal at a sufficiently
early time, then it will reach Alice by the time she reaches a given event p.
Hence the far past of Bob’s worldline is always visible to Alice in Minkowski
spacetime. Not so in de Sitter spacetime.
Now let p approach I+:

The shaded region is the region from which A can receive a signal at any point
along her worldine. The boundary of this region is called the cosmological
horizon. Points outside this horizon are invisible to A even if she waits for
an arbitrarily long time. The cosmological horizon depends (only) on p.
However, we are usually most interested in the particular horizon defined
using our own worldline.

Consider Bob again. Even if A waits for an arbitrarily long time, she cannot
see points beyond q on Bob’s worldline because they are outside her cosmo-
logical horizon. It takes infinitely long for her to see Bob reach the event
q. This is very similar to the infinite redshift effect that we saw when we
discussed black holes.
There is another coordinate system that is frequently used to describe de
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Sitter spacetime. It is defined by

t̂ = L log

(
x0 + x4

L

)
, x̂i =

Lxi

x0 + x4
(407)

where i = 1, 2, 3. These coordinates cover only the half of de Sitter spacetime
with x0+x4 > 0. In these coordinates, the de Sitter metric is (examples sheet
4)

ds2 = −dt̂2 + e2t/Lδijdx̂
idx̂j (408)

Surfaces of constant t̂ are flat: this is called the flat slicing of de Sitter
spacetime. Note that x0 +x4 is a function of t and χ in the global coordinate
discussed above. Hence t̂ is a function of t and χ or, equivalently, a function
of η and χ.

Exercise. Show that t̂ = −∞ (i.e. x0 + x4 = 0) corresponds to η = χ.
Plotting surfaces of constant t̂ on the Penrose diagram of de Sitter spacetime
gives

45 FLRW cosmology

The Copernican principle asserts that we do not occupy a privileged position
in the Universe: the Universe viewed from one point should ”look the same”
as when viewed from another point. Clearly these features are not true
on small scales but, on the largest length scales (above 108 light years),
observations of the distribution of galaxies provides strong evidence that the
Copernican principle is correct. Mathematically, we interpret the Copernican
principle as the statement that spacetime is spatially homogeneous.
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Definition. A spacetime (M, g) is spatially homogeneous it there exists a
group of isometries whose orbits are 3d spacelike surfaces.

Recall that the orbit of a point p is the set of points obtained by acting
with the isometry group on p. We say that a surface is spacelike if any
vector tangent to the surface is spacelike. Pulling back the spacetime metric
gives a homogeneous metric on each of these surfaces. Hence through each
point of a spatially homogeneous spacetime there exists a 3d surface with a
homogeneous metric. This is to be regarded as ”space” at a given ”instant
of time”.
Our Universe has another important property: it looks the same in all direc-
tions, i.e., it is isotropic. The best evidence for this comes from the observed
uniformity of the cosmic microwave background radiation. Note that only
certain observers can see the universe as isotropic. If an observer at p has
a 4-velocity which has a non-trivial component along the surface of spatial
homogeneity through p then this picks out a spatial direction within this sur-
face. But a preferred spatial direction is incompatible with isotropy. Hence
only observers with 4-velocity normal to the surfaces of spatial homogeneity
can perceive the Universe to be isotropic. This gives us a preferred class of
observers, called comoving observers.
Since comoving observers exist everywhere in the spacetime, their 4-velocity
determines a vector field ua. This is just the unit normal to the surfaces of
homogeneity. It can be shown that one can introduce coordinates (t, xi) such
that the spacetime metric takes the form

ds2 = −dt2 + a(t)2hij(x)dxidxj (409)

where ua = (∂/∂t)a and the surfaces of homogeneity are given by t =
constant, with metric a(t)2hij(x). Isotropy can be defined as the statement
that given two unit (spacelike) vectors va and wa that are tangent to such a
surface at some point p, there exists an isometry φ such that φ∗(v) = w. It
can be shown that spatial homogeneity and isotropy imply that these surfaces
must be spaces of constant curvature and hence locally we have

ds2 = −dt2 + a(t)2dΣ2
k (410)

where

dΣ2
k =

dr2

1− kr2
+ r2

(
dθ2 + sin2 θ dφ2

)
(411)
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where k = 1, 0,−1 corresponds to S3, Euclidean space or H3. The func-
tion a(t) is called the scale factor. A spacetime with metric (410) is called
Friedmann-Lemaitre-Robertson-Walker (FLRW) universe (or sometimes a
Friedmann universe, or a FRW universe, or a RW universe, . . . ). It is a
good approximation to the geometry of our Universe on the largest scales.
The universe is said to be closed if k = 1, flat if k = 0 and open if k = −1.

Exercise. Comoving observers have worldines with constant xi and t = τ
(proper time). Show that such curves are geodesics.

Consider two comoving particles (”galaxies”). At any instant of time t, the
proper distance between then is d = a(t)R where R is the distance between
then calculated using the time-independent metric hij. For example, if k = 0

we can use Cartesian coordinates so that hij = δij and then R =
√

∆xi∆xi

where ∆xi is their coordinate separation. It follows that the ”relative veloc-
ity” of the two particles is

v ≡ ḋ = ȧR = Hd (412)

where a dot denotes a t-derivative and

H =
ȧ

a
. (413)

Equation (412) states that at any time, we should observe the velocity of
a galaxy to be proportional to its distance. This is known as Hubble’s law.
The current value of H, denotes H0, is the Hubble constant. Hubble found
that galaxies are moving apart, so a(t) is increasing with time. Note that
v > 1 for a very distant galaxy. This does not contradict the assertion that
”nothing can move faster than light”, which refers to the relative velocity of
two particles at the same point.
To determine a(t) we need to solve Einstein’s equation. What energy-momentum
tensor should we put on the RHS? If we are interested only in the largest
length scales then we can approximate galaxies as the particles of a fluid, with
some energy density ρ. Galaxies interact only gravitationally hence we can
treat the fluid as pressureless. Furthermore, since the distribution of galaxies
is observed to be homogeneous and isotropic, they must be comoving, i.e.,
have 4-velocity ua = (∂/∂t)a, and ρ cannot depend on xi. A pressureless
perfect fluid is usually called dust although cosmologists also call it matter.
Recall that the fluid equations imply that the 4-velocity ua of such a fluid
must be geodesic, as is the case for our assumed comoving fluid.
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The Universe also contains electromagnetic radiation, which forms the cosmic
microwave background radiation. This is thermal, with a temperature of
about 2.7K. Blackbody radiation can be described as a perfect fluid with
p = ρ/3. Once again, homogeneity and isotropy implies that ua = (∂/∂t)a

for this fluid.
We also have the cosmological constant. As discussed previously, this can
be regarded as a perfect fluid with p = −ρ = Λ/(8πG). Hence all of the
contributions to the energy-momentum tensor can be described by a perfect
fluid, but with different equations of state (an equation of state is a rule
specifying p as a function of ρ). However, each is linear and therefore we can
summarize as

p = wρ (414)

where w = 0 for dust/matter, w = 1/3 for radiation and w = −1 for a
cosmological constant.
Conservation of the energy-momentum tensor ∇aT

ab = 0 reduces to the
equation (exercise)

ρ̇+ 3
ȧ

a
(ρ+ p) = 0, (415)

which can also be written

d

dt

(
a3ρ
)

= −p d
dt

(
a3
)

(416)

Note the the LHS is the rate of increase of energy in a fixed comoving volume
and the RHS is the rate of working against the pressure of the fluid as it
expands (dE = −pdV ).
The separate fluids (dust, radiation, Λ) have energy momentum tensors that
are separately conserved (this arises from the assumption that interactions
between these fluids are negligible). Hence each must obey (415). Substitut-
ing in p = wρ for constant w we can integrate to obtain

ρ(t) = ρ0

(
a0

a(t)

)3(1+w)

(417)

In cosmology, a subscript 0 refers to the value of the corresponding quantity
at the present time. As the Universe expands, the energy density of the
different fluids dilutes at different rates: dust as a−3, radiation as a−4 and a
cosmological constant does not dilute at all. It follows that if the Universe
expands indefinitely then ultimately it will be dominated by Λ.
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With a perfect fluid on the RHS of the Einstein equation, it can be shown
to reduce to the pair of equations(

ȧ

a

)2

=
8π

3
ρ− k

a2
(418)

ä

a
= −4π

3
(ρ+ 3p) (419)

Equation (418) is called the Friedmann equation. Equation (419) can be
derived from the Friedmann equation and equation (415).
What is the value of k in our Universe? The spatial geometry is a space
of constant curvature with K = k/a2. Observations can measure K, from
which one finds that the term k/a2 in Friedmann’s equation is negligible
compared to the other term on the RHS of the equation at the present time.
For matter, or radiation, the other term grows faster that k/a2 as a → 0,
hence it follows that the curvature term was even more unimportant early
on in the Universe. Hence it is a good approximation to set k = 0.
Since the different types of fluid dilute at different rates, they will be impor-
tant at different epochs of the Universe. Radiation will dominate at early
times and a cosmological constant will dominate at late times, with matter
domination possible at intermediate times. Therefore let’s consider the case
in which a single fluid dominates in the Friedmann equation. We can use
(417) to obtain (

ȧ

a

)2

=
8π

3
ρ0

(a0

a

)3(1+w)

− k

a2
(420)

This ODE can be integrated to determine a(t) for different equation of state
parameters w. The simplest case is w = −1, a cosmological constant:

Exercise. Solve this equation for a (positive) cosmological constant (w =
−1). Show that the resulting Universe is de Sitter spacetime for k = 1, 0.
(The same is true for k = −1 but we have not discussed the ”open slicing”
of de Sitter.) A constant of integration can be eliminated by a shift in the
time coordinate: t→ t+ constant,

Another simple case is a flat universe (k = 0) for which (assuming ȧ > 0 and
w > −1 and shifting t to eliminate a constant of integration)

a(t) = a0

(
t

t0

) 2
3(1+w)

(421)
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Note that a(t) is a monotonically increasing function of t with a(t) → 0 as
t → 0+. Hence if we follow the evolution of this universe backwards, the
proper distance between particles decreases, and tends to zero as t → 0+.
The energy density ρ diverges at t = 0. Since this is a scalar, it diverges
in all coordinate charts. Hence the spacetime cannot be extended smoothly
beyond t = 0. It can be shown that the Ricci scalar also diverges at t = 0
hence t = 0 is a curvature singularity. This is called the Big Bang.
Many people used to think that the Big Bang singularity was an effect of
assuming exact homogeneity and isotropy. However, the singularity theo-
rems of Hawking and Penrose proved that a past singularity must occur for
a universe that is close to being homogeneous and isotropic today, assuming
that the energy-momentum tensor of matter satisfies a ”reasonable” condi-
tion called the strong energy condition, which is equivalent to ρ + p ≥ 0,
ρ + 3p ≥ 0 for a perfect fluid. Hence there must have been a singularity
if matter or radiation dominated early in the universe. (Theories of ”infla-
tion” assume that the strong energy condition was violated in the very early
universe and thereby evade the singularity theorems.)

46 Causal structure of FLRW universe

It is convenient to introduce a conformal time coordinate η defined by

η =

∫ t

0

dt′

a(t′)
⇒ dη =

dt

a(t)
(422)

hence the FLRW metric becomes

ds2 = a(η)2
(
−dη2 + dΣ2

k

)
(423)

where a(η) = a(t(η)). An immediate consequence is that the FLRW metric
has the same causal structure as the time-independent unphysical metric
(choose Ω = 1/a in (401))

ĝ = −dη2 + dΣ2
k (424)

From examples sheet 4, g and ĝ have the same null geodesics. Consider two
photons, the first emitted by a galaxy at time ηe and observed by us at time
ηo. The second is emitted at time ηe + ∆η. Since the unphysical geometry
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is time independent, its path must be the same as that of the first photon
translated in time by ∆η. Hence it is observed by us at time ηo + ∆η.
Since the galaxies are comoving, it follows that the photons are emitted from
points with the same values for the coordinates xi. Hence the proper time
between the emission of the two photons is given by (∆τe)

2 = a(ηe)
2(∆η)2,

where we assume that ∆η is small compared to the scale of time variation of
a. So ∆τe = ae∆η where ae = a(ηe). Similarly, the proper time between the
reception of the the photons is ∆τo = ao∆η where ao = a(ηo). Hence

∆τ0

∆τe
=
ao
ae
> 1 (425)

The proper time interval between the observed photons is greater than that
between the emitted photons. If instead of photons, we apply the argument
to successive wavecrests of a light wave, we see that the received wave has a
greater period than the emitted wave so the light undergoes a redshift. By
measuring the redshift of light from a distant galaxy, we can deduce how
much smaller the Universe was when that light was emitted. The largest
observed redshifts for galaxies are a0/ae ∼ 9.

In terms of η, (420) becomes(
da

dη

)2

+ ka2 = C2a1−3w (426)

where a prime denotes an η-derivative and C > 0 is defined by C2 =
8πρ0a

3(1+w)
0 /3. The simplest case is radiation (w = 1/3) for which

a(η) =


C sin η if k = 1
Cη if k = 0
C sinh η if k = −1

(427)

where we have assumed that a′ > 0 and shifted η so that a = 0 at η = 0.
Sketching the different cases gives:
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All three cases start with a Big Bang singularity, in accord with the singular-
ity theorems. The closed universe stops expanding at η = π/2 and recollapses
into a ”Big Crunch” singularity at η = π. The flat and open universes ex-
pand forever, although the rate of expansion is decreasing (equation (419)
implies that ä < 0).
In the case of a matter dominated universe (w = 0), the solution is

a(η) =


(C2/2)(1− cos η) if k = 1
(C2/4)η2 if k = 0
(C2/2)(cosh η − 1) if k = −1

(428)

Once again, each case starts with a Big Bang. The closed case recollapses
into a Big Crunch at η = 2π whereas the flat and open cases expand forever,
with deceleration (ä < 0).
In the case of a closed universe, the unphysical metric (424) is the portion
0 < η < π (radiation dominated) or 0 < η < 2π (matter dominated) of
the Einstein static universe, where the boundaries are now curvature singu-
larities. Hence we can draw Penrose diagrams just as we did for de Sitter
spacetime:
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Here χ is the coordinate on S3 we discussed previously. Consider a comoving
observer, who we can assume to be at χ = 0 (any comoving observer has
constant χ and all points on S3 are equivalent). The cosmological horizon
for such an observer is shown.
In the k = 0 case, the unphysical metric is Minkowski spacetime

ĝ = −dη2 + dx2 + dy2 + dz2 (429)

where we have traded spherical polar coordinates on dΣ2
0 for Cartesian co-

ordinates. This is a considerable simplification, but it is not a conformal
compactification because the ranges of all of the coordinates are still infinite.
To draw the Penrose diagram for this case we would have to understand how
to draw the Penrose diagram for Minkowski spacetime (see the black holes
course). Nevertheless, we can use the unphysical metric to understand the
causal structure of a k = 0 universe.
In the case of a single type of fluid, we can use equation (421) to determine,
for w > −1/3,

a(η) = a0

(
η

η0

) 2
1+3w

(430)

The Big Bang corresponds to η = 0 and there is no upper limit on η. There-
fore the causal structure of the spacetime is the same as that of Minkowski
spacetime but with the restriction η > 0. If an observer waits for long
enough, she can receive a signal from any point in the spacetime so there
is no cosmological horizon. However, if we consider a flat universe that is
radiation or matter dominated early on (and hence a Big Bang at η = 0)
but Λ dominated at late times, i.e., a(t) ∝ et/L for large t, then from (422)
we have η → η∞ (a constant) as t → ∞. Hence the physical spacetime has
0 < η < η∞, which implies that there is a cosmological horizon (as would be
expected, since the universe is approaching de Sitter spacetime):
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Now let’s not worry about what happens in the far future and consider the
history of our Universe, which we assume to be matter or radiation dominated
at early times. Comoving particles (i.e. galaxies) follow lines of constant
x, y, z. Consider the point p shown:

Only comoving particles whose worldines intersect the past light cone of p
can send a signal to an observer at p. The boundary of the region containing
such worldines is called the particle horizon at p. This is what cosmologists
usually mean when they refer to ”the horizon” (with p our present spacetime
location). The only galaxies visible at p are those inside the particle horizon
at p.

Exercise. Show that a closed radiation dominated universe has a particle
horizon for any p. Show that a closed matter dominated universe has a
particle horizon at p only when p is in the ”expanding phase” (η < π) of the
evolution. (If you consider points p that are not at χ = 0 or χ = π then it
helps to visualize the Einstein static universe as a cylinder instead of using
the Penrose diagram.)

The existence of particle horizons leads to a puzzle. The cosmic microwave
background radiation (CMB) is left over from a time a few hundred thousand
years after then Big Bang. Its temperature is very uniform: 2.7K with
deviations of order 10−5. At earlier times, the Universe contained an ionized
plasma of electrons and protons, which interacted with photons. As the
Universe expanded, it cooled, and the electrons and protons combined into
neutral (hydrogen) atoms, a process misleadingly called recombination. After
recombination, the photons stopped interacting significantly with matter,
and gradually cooled. These are the photons that form the CMB that we
observe today. Hence observations of the CMB are looking back to the time
of recombination. Consider two opposite directions on the sky and let q,
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r be the points (at the time of recombination) at which photons in those
directions were emitted, to reach us at event p:

The photons were emitted at a time sufficiently close to the Big Bang that
there is no point that lies inside the particle horizons of both p and q. Hence
no point can send a signal to both p and q. So how do photons at p and q
”know” that they should be at almost exactly the same temperature? This
is the horizon problem. A proposed solution to this problem is that the very
early universe underwent a period of inflation (before it became radiation
dominated), which is a de Sitter like phase with a(t) ∝ et/L. This has the
effect of greatly decreasing the lower bound on η and thereby increasing the
size of particle horizons.
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