The curve $y=3^{x}$ intersects the curve $y=10-x^{3}$ at the point where $x=\alpha$.
(a) Show that α lies between 1 and 2 .
(2 marks)
(b) (i) Show that the equation $3^{x}=10-x^{3}$ can be rearranged into the form $x=\sqrt[3]{10-3^{x}}$.
(I mark)
(ii) Use the iteration $x_{n+1}=\sqrt[3]{10-3^{x_{n}}}$ with $x_{1}=1$ to find the values of x_{2} and x_{3}, giving your answers to three decimal places.
(2 marks)

2 (a) The diagram shows the graph of $y=\sec x$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.

(i) The point A on the curve is where $x=0$. State the y-coordinate of A.
(ii) Sketch, on the axes given on page 5, the graph of $y=|\sec 2 x|$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(b) Solve the equation $\sec x=2$, giving all values of x in degrees in the interval $0^{\circ} \leqslant x \leqslant 360^{\circ}$.
(c) Solve the equation $\left|\sec \left(2 x-10^{\circ}\right)\right|=2$, giving all values of x in degrees in the interval $0^{\circ} \leqslant x \leqslant 180^{\circ}$.
(a)(ii)

3 (a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when:
(i) $y=\ln (5 x-2)$;
(ii) $y=\sin 2 x$.
(b) The functions f and g are defined with their respective domains by

$$
\begin{array}{ll}
f(x)=\ln (5 x-2), & \text { for real values of } x \text { such that } x \geqslant \frac{1}{2} \\
g(x)=\sin 2 x, & \text { for real values of } x \text { in the interval }-\frac{\pi}{4} \leqslant x \leqslant \frac{\pi}{4}
\end{array}
$$

(i) Find the range of f.
(ii) Find an expression for $\mathrm{gf}(x)$.
(iii) Solve the equation $\operatorname{gf}(x)=0$.
(iv) The inverse of g is g^{-1}. Find $\mathrm{g}^{-1}(x)$.

4 (a) Use Simpson's rule with 7 ordinates (6 strips) to find an approximation to $\int_{0.5}^{2} \frac{x}{1+x^{3}} \mathrm{~d} x$, giving your answer to three significant figures.
(b) Find the exact value of $\int_{0}^{1} \frac{x^{2}}{1+x^{3}} \mathrm{~d} x$.

5 (a) Show that the equation

$$
10 \operatorname{cosec}^{2} x=16-11 \cot x
$$

can be written in the form

$$
10 \cot ^{2} x+11 \cot x-6=0
$$

(b) Hence, given that $10 \operatorname{cosec}^{2} x=16-11 \cot x$, find the possible values of $\tan x$.

6 The diagram shows the curve $y=\frac{\ln x}{x}$.

The curve crosses the x-axis at A and has a stationary point at B.
(a) State the coordinates of A.
(b) Find the coordinates of the stationary point, B, of the curve, giving your answer in an exact form.
(c) Find the exact value of the gradient of the normal to the curve at the point where $x=\mathrm{e}^{3}$.

7 (a) Use integration by parts to find:

$$
\begin{aligned}
& \text { (i) } \int x \cos 4 x \mathrm{~d} x \\
& \text { (ii) } \int x^{2} \sin 4 x \mathrm{dx}
\end{aligned}
$$

(4 marks)
(4 marks)
(b) The region bounded by the curve $y=8 x \sqrt{(\sin 4 x)}$ and the lines $x=0$ and $x=0.2$ is rotated through 2π radians about the x-axis. Find the value of the volume of the solid generated, giving your answer to three significant figures.
(3 marks)

The curve $y=4 \mathrm{e}^{-2 x}+2$ crosses the y-axis at the point A and the curves intersect at the point B.
(a) Describe a sequence of two geometrical transformations that maps the graph of $y=\mathrm{e}^{x}$ onto the graph of $y=\mathrm{e}^{2 x}-1$.
(b) Write down the coordinates of the point A.
(c) (i) Show that the x-coordinate of the point B satisfies the equation

$$
\begin{equation*}
\left(e^{2 x}\right)^{2}-3 e^{2 x}-4=0 \tag{2marks}
\end{equation*}
$$

(ii) Hence find the exact value of the x-coordinate of the point B.
(d) Find the exact value of the area of the shaded region bounded by the curves $y=\mathrm{e}^{2 x}-1$ and $y=4 \mathrm{e}^{-2 x}+2$ and the y-axis.

