The curve $y = 3^x$ intersects the curve $y = 10 - x^3$ at the point where $x = \alpha$.

(a) Show that α lies between 1 and 2.

1

(2 marks)

(1 mark)

(b) (i) Show that the equation $3^x = 10 - x^3$ can be rearranged into the form $x = \sqrt[3]{10 - 3^x}$.

(ii) Use the iteration $x_{n+1} = \sqrt[3]{10 - 3^{x_n}}$ with $x_1 = 1$ to find the values of x_2 and x_3 , giving your answers to three decimal places. (2 marks)

(i) The point A on the curve is where x = 0. State the y-coordinate of A. (1 mark)

(ii) Sketch, on the axes given on page 5, the graph of $y = |\sec 2x|$ for $0^\circ \le x \le 360^\circ$.

(3 marks)

- (b) Solve the equation $\sec x = 2$, giving all values of x in degrees in the interval $0^{\circ} \le x \le 360^{\circ}$. (2 marks)
- (c) Solve the equation $|\sec(2x 10^\circ)| = 2$, giving all values of x in degrees in the interval $0^\circ \le x \le 180^\circ$. (4 marks)

3 (a) Find $\frac{dy}{dx}$ when: (i) $y = \ln(5x - 2);$

(ii)
$$y = \sin 2x$$
.

(2 marks)

(b) The functions f and g are defined with their respective domains by

 $f(x) = \ln(5x - 2)$, for real values of x such that $x \ge \frac{1}{2}$

 $g(x) = \sin 2x$, for real values of x in the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$

(i) Find the range of f. (2 marks)
(ii) Find an expression for gf(x). (1 mark)

(iii) Solve the equation gf(x) = 0. (3 marks) (iv) The inverse of g is g^{-1} . Find $g^{-1}(x)$. (2 marks)

5 (a) Show that the equation

(b)

 $10 \operatorname{cosec}^2 x = 16 - 11 \operatorname{cot} x$

can be written in the form

 $10\cot^2 x + 11\cot x - 6 = 0$

mark)

(4 marks)

Hence, given that $10 \operatorname{cosec}^2 x = 16 - 11 \cot x$, find the possible values of $\tan x$.

The curve crosses the x-axis at A and has a stationary point at B.

(a) State the coordinates of A.

(1 mark)

- (b) Find the coordinates of the stationary point, *B*, of the curve, giving your answer in an exact form. (5 marks)
- (c) Find the exact value of the gradient of the normal to the curve at the point where $x = e^3$. (3 marks)

(b)

The region bounded by the curve $y = 8x\sqrt{(\sin 4x)}$ and the lines x = 0 and x = 0.2 is rotated through 2π radians about the x-axis. Find the value of the volume of the solid generated, giving your answer to three significant figures. (3 marks)

The curve $y = 4e^{-2x} + 2$ crosses the y-axis at the point A and the curves intersect at the point B.

- (a) Describe a sequence of two geometrical transformations that maps the graph of $y = e^x$ onto the graph of $y = e^{2x} 1$. (4 marks)
- (b) Write down the coordinates of the point A. (1 mark)
- (c) (i) Show that the x-coordinate of the point B satisfies the equation

$$(e^{2x})^2 - 3e^{2x} - 4 = 0 (2 marks)$$

- (ii) Hence find the exact value of the x-coordinate of the point B. (3 marks)
- (d) Find the exact value of the area of the shaded region bounded by the curves $y = e^{2x} 1$ and $y = 4e^{-2x} + 2$ and the y-axis. (5 marks)