Question 10

A bead B of mass m can slide along a rough horizontal wire. A light inextensible string of length 2ℓ has one end attached to a fixed point A of the wire and the other to B. A particle P of mass $3 m$ is attached to the mid-point of the string and B is held at a distance ℓ from A. The bead is released from rest.

Let a_{1} and a_{2} be the magnitudes of the horizontal and vertical components of the initial acceleration of P. Show by considering the motion of P relative to A, or otherwise, that $a_{1}=\sqrt{3} a_{2}$. Show also that the magnitude of the initial acceleration of B is $2 a_{1}$.

The diagram of the situation is as follows

Consider the acceleration components at P, we have $a_{1}^{2}+a_{2}^{2}=a^{2}$ and that

$$
\begin{gathered}
a \cos \alpha=\frac{1}{2} a=a_{1} \\
a \sin \alpha=\frac{\sqrt{3}}{2} a=a_{2}
\end{gathered}
$$

since $\alpha=\pi / 3$ (for an equilateral triangle), hence $a_{1}=\sqrt{3} a_{2}$.
The acceleration of the system is therefore a, which is $a_{1} / \cos \alpha=2 a_{1}=a_{B}$.

Given that the frictional force opposing the motion of B is equal to $(\sqrt{3} / 6) R$, where R is the normal reaction between B and the wire, show that the magnitude of the initial acceleration of P is $g / 18$.

We need to resolve the forces around B and P individually.
At B :

$$
\begin{align*}
& (\rightarrow): 2 a_{1} m=\frac{1}{2} T_{B P}-\frac{\sqrt{3}}{6} R \tag{1}\\
& (\uparrow): R=m g+\frac{\sqrt{3}}{2} T_{B P} \tag{2}
\end{align*}
$$

and at P :

$$
\begin{align*}
(\rightarrow): 3 a_{1} m & =\frac{1}{2}\left(T_{A P}-T_{B P}\right) \tag{3}\\
(\uparrow): 3 a_{2} m & =3 m g-\frac{\sqrt{3}}{2}\left(T_{A P}+T_{B P}\right) \tag{4}
\end{align*}
$$

$\frac{1}{6} \sqrt{3}(2)+(1):$

$$
\frac{1}{2} T_{B P}=\frac{\sqrt{3}}{6}\left(m g+\frac{\sqrt{3}}{2} T_{B P}\right)+2 a_{1} m \Leftrightarrow T_{B P}=8 m a_{1}+\frac{2}{3} \sqrt{3} m g
$$

$(4)+\sqrt{3}(3)$:

$$
\begin{equation*}
\sqrt{3} T_{B P}=-3 m\left(\sqrt{3} a_{1}+a_{2}-g\right) \Leftrightarrow T_{B P}=\sqrt{3} m g-4 m a_{1} \tag{6}
\end{equation*}
$$

hence equating (5) and (6) gives

$$
12 m a_{1}=m g\left(\sqrt{3}-\frac{2 \sqrt{3}}{3}\right) \Leftrightarrow a_{1}=\frac{\sqrt{3} g}{36}
$$

and since $a_{1}=\sqrt{3} a_{2}$, hence $a_{2}=g / 36$. Combining the components together using Pythagoras' theorem gives

$$
a=\sqrt{a_{1}^{2}+a_{2}^{2}}=\sqrt{\frac{1}{36^{2}}+\frac{3}{36^{2}}} g=\frac{g}{18} .
$$

as required.

