Question 14

The probability of throwing a 6 with a biased die is p. It is known that p is equal to one or other of the numbers A and B where $0<A<B<1$. Accordingly the following statistical test of the hypothesis $H_{0}: p=B$ against the alternative hypothesis $H_{1}: p=A$ is performed.

The die is thrown repeatedly until a 6 is obtained. Then if X is the total number of throws, H_{0} is accepted if $X \leq M$, where M is a given positive integer; otherwise H_{1} is accepted. Let α be the probability that H_{1} is accepted if H_{0} is true, and let β be the probability that H_{0} is accepted if H_{1} is true.

Show that $\beta=1-\alpha^{K}$, where K is independent of M and is to be determined in terms of A and B.

Using conditional probability, we have

$$
\begin{gathered}
\alpha=\mathrm{P}\left(H_{1} \text { accepted } \mid H_{0} \text { is true }\right)=\mathrm{P}(X>M \mid p=B) \\
=\frac{\mathrm{P}(X>M \text { and } p=B)}{\mathrm{P}(p=B)}
\end{gathered}
$$

and similarly

$$
\begin{gathered}
\beta=\mathrm{P}\left(H_{0} \text { accepted } \mid H_{1} \text { is true }\right)=\mathrm{P}(X \leq M \mid p=A) \\
=\frac{\mathrm{P}(X \leq M \text { and } p=A)}{\mathrm{P}(p=A)}
\end{gathered}
$$

Breaking up the probability for β and summing the individual conditional probabilities, we have

$$
\begin{gathered}
\beta=\sum_{i=1}^{M} \mathrm{P}(X=i \mid p=A)=\sum_{i=1}^{M} \frac{\mathrm{P}(X=i \text { and } p=A)}{\mathrm{P}(p=A)} \\
=\frac{A\left(A+A(1-A)+A(1-A)^{2}+\cdots+A(1-A)^{M-1}\right)}{A} \\
=\sum_{i=1}^{M} A(1-A)^{i-1}=\frac{A\left\{1-(1-A)^{M}\right\}}{1-(1-A)} \\
=1-(1-A)^{M}
\end{gathered}
$$

Similarly for α,

$$
\alpha=1-\sum_{i=1}^{M} \mathrm{P}(X=i \mid p=B)=1-\left\{1-(1-B)^{M}\right\}=(1-B)^{M}
$$

Since $\beta=1-(1-A)^{M}$, hence let $\alpha^{K}=(1-A)^{M}$ gives

$$
(1-A)^{M}=(1-B)^{M K}
$$

taking logs on both sides and we've found K in terms of A and B.

$$
K=\frac{\ln (1-A)}{\ln (1-B)}
$$

Sketch the graph of β against α.
If we subtract the inequality $0<A<B<1$ from 1 , we have

$$
1>1-A>1-B>0
$$

hence we establish that $K>1$.
Differentiating wrt. α gives

$$
\frac{\mathrm{d} \beta}{\mathrm{~d} \alpha}=-K \alpha^{K-1}
$$

so when $\alpha=0, \frac{\mathrm{~d} \beta}{\mathrm{~d} \alpha}=0$ and negative gradient everywhere else.

