5 Two sources S_1 and S_2 of sound are situated 80 cm apart in air, as shown in Fig. 5.1.

For Examiner's Use

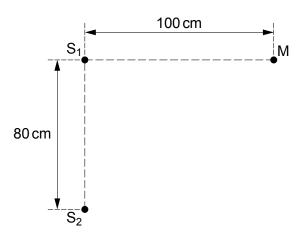


Fig. 5.1

The frequency of vibration can be varied. The two sources always vibrate in phase but have different amplitudes of vibration.

A microphone M is situated a distance 100 cm from S_1 along a line that is normal to S_1S_2 .

As the frequency of S_1 and S_2 is gradually increased, the microphone M detects maxima and minima of intensity of sound.

(a)	State the two	conditions	that must	be	satisfied	for	the	intensity	of	sound	at	M	to	be
	zero.													

1	 	
2		
	 	 [2]

(b) The speed of sound in air is $330 \,\mathrm{m}\,\mathrm{s}^{-1}$.

The frequency of the sound from $\rm S_1$ and $\rm S_2$ is increased. Determine the number of minima that will be detected at M as the frequency is increased from 1.0 kHz to 4.0 kHz.

number =[4]