

GCE

Chemistry A

Advanced GCE F325

Equilibria, Energetics and Elements

Mark Scheme for June 2010

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2010

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annesley NOTTINGHAM NG15 0DL

Telephone: 0870 770 6622 Facsimile: 01223 552610

E-mail: publications@ocr.org.uk

Qı	estic	n Expected Answers	Marks	Additional Guidance
1	а		3	ALLOW
		F		1450
		В		736
		G		G
		E		76
		D		-642
		FIVE correct		
		FOUR correct		
		THREE correct ✓	_	
	b	Correct calculation	2	ALLOW for 1 mark:
		-642 - (+76 + (2 × 150) + 736 + 1450 + (2 × -349)) ✓		$-2705 (2 \times 150 \text{ and } 2 \times 349 \text{ not used for Cl})$
		-642 - 1864		-2356 (2 × 150 not used for Cl)
		$= -2506 \checkmark (kJ mol^{-1})$		-2855 (2 × 349 not used for CI)
				+2506 (wrong sign) DO NOT ALLOW any other answers
	С		3	ANNOTATIONS MUST BE USED
	C		3	ANNOTATIONS MOST BE OSED
		Magnesium ion OR Mg ²⁺		ALLOW magnesium/Mg is 2+ but sodium/Na is 1+
		has greater charge (than sodium ion OR Na ⁺)		DO NOT ALLOW Mg atom is 2+ but Na atom is 1+
		OR Mg ²⁺ has greater charge density ✓		ALLOW 'charge density' here only
		Magnesium ion OR Mg ²⁺ is smaller ✓		ALLOW Mg OR magnesium is smaller
		magnosiam ion en mang io omano.		DO NOT ALLOW Mg ²⁺ has a smaller atomic radius
				3
		Mg ²⁺ has a stronger attraction (than Na ⁺) to Cl ⁻ ion		ALLOW anion OR negative ion for Cl⁻
		OR		DO NOT ALLOW chlorine ions
		Greater attraction between oppositely charged ions ✓		DO NOT ALLOW Mg has greater attraction
				ALLOW 'attracts with more force' for greater attraction
				but DO NOT ALLOW 'greater force (could be repulsion)
				groater force (could be repulsion)
				ALLOW reverse argument throughout in terms of Na ⁺
		Total	8	

Qι	ıesti	on Expected Answers	Marks	Additional Guidance
2	а	$BrO_3^- + 5Br^- + 6H^+ \longrightarrow 3Br_2 + 3H_2O \checkmark$	1	ALLOW multiples
	b	graph:	1	ANNOTATIONS MUST BE USED Both explanation and 1st order required for mark
		Straight/diagonal line through origin OR 0,0 AND 1st order with respect to BrO ₃ ⁻ ✓		DO NOT ALLOW diagonal line OR straight line OR constant gradient on its own (no mention of origin OR 0,0) ALLOW 'As BrO ₃ ⁻ doubles, rate doubles' AND 1st order
		initial rates data: When [Br⁻] is doubled, rate × 2 ✓ 1st order with respect to Br⁻ ✓	4	ALLOW rate is proportional to concentration AND 1st order Mark order and explanation independently Mark order first, then explanation
		When $[H^+] \times 2$, rate $\times 4$ (2^2) \checkmark 2nd order with respect to $H^+ \checkmark$ Rate equation rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] ² \checkmark	1	ALLOW ECF from candidate's orders above

Question	Expected Answers	Marks	Additional Guidance
	Calculation of rate constant (3 marks)	3	ANNOTATIONS MUST BE USED
	$k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]^2}$ $\mathbf{OR} \frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ $= 1.7 \times 10^{-2} \mathbf{OR} 1.65 \times 10^{-2} \checkmark \text{dm}^9 \text{mol}^{-3} \text{s}^{-1} \checkmark$		Calculation can be from any of the experimental runs – they all give the same value of k ALLOW $mol^{-3} dm^9 s^{-1}$ ALLOW 1.6510579×10^{-2} and correct rounding to 1.7×10^{-2} Correct numerical answer subsumes previous marking point DO NOT ALLOW fraction: $\frac{238}{14415}$
			ALLOW ECF from incorrect rate equation. Examples are given below for 1st line of initial rates data. IF other rows have been used, then calculate the rate constant from data chosen. Example 1: 1st order with respect to H ⁺ rate = k [BrO ₃ ⁻] [Br ⁻] [H ⁺] $k = \frac{\text{rate}}{[\text{BrO}_3^-][\text{Br}^-][\text{H}^+]}$ OR $\frac{1.19 \times 10^{-5}}{(5.0 \times 10^{-2})(1.5 \times 10^{-1})(3.1 \times 10^{-1})} \checkmark$ = 5.1×10^{-3} OR 5.12×10^{-3} \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW $5.11827957 \times 10^{-3}$ and correct rounding to 5.1×10^{-3}
			Example 2: Zero order with respect to BrO_3^- rate = k [Br ⁻] [H ⁺] ² $k = \frac{\text{rate}}{[Br^-][H^+]^2}$ OR $\frac{1.19 \times 10^{-5}}{(1.5 \times 10^{-1})(3.1 \times 10^{-1})^2} \checkmark$ = 8.3×10^{-4} OR 8.26×10^{-4} \checkmark dm ⁶ mol ⁻² s ⁻¹ \checkmark ALLOW $8.255289629 \times 10^{-4}$ and correct rounding to 8.3×10^{-4}
	Total	10	and something to one with

Qu	esti	on	Expected Answers	Marks	Additional Guidance
3	а			4	ALLOW C ₂ H ₅ throughout question
			measured pH > 1 OR [H $^+$] < 0.1 (mol dm $^{-3}$) \checkmark		ALLOW [H ⁺] < [CH ₃ CH ₂ COOH] OR [H ⁺] < [HA] ALLOW measured pH is higher than expected ALLOW measured pH is not as acidic as expected ALLOW a quoted pH value or range > 1 and < 7 OR between 1 and 7
			$[H^+] = 10^{-pH} \checkmark$		ALLOW [H ⁺] = antilog –pH OR [H ⁺] = inverse log –pH
			$K_{a} = \frac{[H^{+}][CH_{3}CH_{2}COO^{-}]}{[CH_{3}CH_{2}COOH]}$ OR $\frac{[H^{+}]^{2}}{[CH_{3}CH_{2}COOH]}$		ALLOW [H ⁺][A ⁻] OR [H ⁺] ² [HA] [HA]
			Calculate K_a from $\frac{[H^{+}]^2}{0.100}$ \checkmark		IF K_a is NOT given and $K_a = \frac{[H^+]^2}{0.100}$ is shown, award mark for K_a also
					(i.e. $K_a = \frac{[H^+]^2}{0.100}$ is automatically awarded the last 2 marks)
	b		Marks are for correctly calculated values. Working shows how values have been derived.	2	ALLOW 3.467368505 × 10 ⁻¹⁴ and correct rounding to 3.5 × 10 ⁻¹⁴
			$[H^+] = 10^{-13.46} = 3.47 \times 10^{-14} \text{ (mol dm}^{-3}) \checkmark$		ALLOW 0.28840315 and correct rounding to 0.29, i.e. ALLOW 0.288
			$[OH^{-}] = \frac{1.0 \times 10^{-14}}{3.47 \times 10^{-14}} = 0.29 \text{ (mol dm}^{-3}) \checkmark$		ALLOW alternative approach using pOH:
					pOH = $14 - 13.46 = 0.54 \checkmark$ [OH ⁻] = $10^{-0.54} = 0.29 \text{ (mol dm}^{-3}) \checkmark$
					Correct answer gets BOTH marks

Question	Expected Answers	Marks	Additional Guidance
С	Propanoic acid reacts with sodium hydroxide forming propanoate ions/sodium propanoate OR CH₃CH₂COOH + NaOH → CH₃CH₂COONa + H₂O ✓	7	ANNOTATIONS MUST BE USED ALLOW C₂H₅ throughout question ALLOW Adding NaOH forms propanoate ions/sodium propanoate (imples that the NaOH is added to the propanoic acid)
	Some propanoic acid remains OR propanoic acid AND propanoate (ions) / sodium propanoate present ✓		ALLOW: weak acid AND its conjugate base/salt present Throughout, do not penalise comments that imply that pH is constant in
	equilibrium: CH ₃ CH ₂ COOH = H ⁺ + CH ₃ CH ₂ COO ⁻ ✓		presence of buffer DO NOT ALLOW HA and A ⁻ in this equilibrium expression For description of action of buffer below, ALLOW HA for CH ₃ CH ₂ COOH; ALLOW A ⁻ for CH ₃ CH ₂ COO ⁻
	Added alkali CH ₃ CH ₂ COOH reacts with added alkali OR CH ₃ CH ₂ COOH + OH ⁻ → OR added alkali reacts with H ⁺ OR H ⁺ + OH ⁻ → ✓		Equilibrium responses must refer back to a written equilibrium. IF no equilibrium shown, use the equilibrium as written in expected answers (which is also written on page 6 of the paper) ALLOW weak acid reacts with added alkali
	\rightarrow CH ₃ CH ₂ COO [−] OR Equilibrium \rightarrow right \checkmark Added acid CH ₃ CH ₂ COO [−] reacts with added acid OR [H ⁺] increases \checkmark \rightarrow CH ₃ CH ₂ COOH OR Equilibrium \rightarrow left \checkmark		ALLOW conjugate base reacts with added acid DO NOT ALLOW salt reacts with added acid
		5	

Questi	on	Expected Answers	Marks	Additional Guidance
d		$HNO_3 + CH_3CH_2COOH \Rightarrow CH_3CH_2COOH_2^+ + NO_3^- \checkmark$ acid 1 base 2 acid 2 base 1 \checkmark	2	State symbols NOT required ALLOW 1 AND 2 labels the other way around. ALLOW 'just acid' and 'base' labels throughout if linked by lines so that it is clear what the acid–base pairs are. IF proton transfer is wrong way around then ALLOW 2nd mark for idea of acid–base pairs, i.e. HNO ₃ + CH ₃ CH ₂ COOH = CH ₃ CH ₂ COO ⁻ + H ₂ NO ₃ *
е	i	$2CH_3CH_2COOH + Mg \rightarrow (CH_3CH_2COO)_2Mg + H_2 \checkmark$	1	base 2 acid 1 base 1 acid 2 ✓ IGNORE state symbols ALLOW ionic equation: 2H ⁺ + Mg → Mg ²⁺ + H ₂ IGNORE any random charges in formula of (CH ₃ CH ₂ COO) ₂ Mg as long as the charges are correct (charges are treated as working)
				i.e. (CH ₃ COO ⁻) ₂ Mg OR (CH ₃ COO) ₂ ⁻ Mg should not be penalised However, Mg ²⁺ instead of Mg on the left side of equation is obviously wrong
	ii	$2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}O + CO_{2}$ $\mathbf{OR} \ 2H^{+} + CO_{3}^{2-} \longrightarrow H_{2}CO_{3}$ $\mathbf{OR} \ H^{+} + CO_{3}^{2-} \longrightarrow HCO_{3}^{-} \checkmark$	1	State symbols NOT required
		Total	17	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
4	а	-	Complete circuit (with voltmeter) and salt bridge linking two half-cells ✓ Pt electrode in solution of Fe²+/Fe³+ ✓ Ag in solution of Ag⁺ ✓	3	DO NOT ALLOW 'solution of a silver halide', e.g. AgCl (as these are insoluble) but DO ALLOW any solution of any other silver salt (whether insoluble or not) IF candidate has used incorrect redox systems, then mark ECF as follows: (i) each incorrect system will cost the candidate one mark (ii) ECF if species have been quoted (see Additional Guidance below) (iii) ECF for equation (iv) ECF for cell potential YOU MAY NEED TO WORK OUT THESE ECF RESPONSES YOURSELF DEPENDING ON THE INCORRECT REDOX SYSTEMS CHOSEN
		ii	electrons AND ions ✓	1	For electrons, ALLOW e ⁻ For 'ions', ALLOW formula of an ion in one of the half-cells or salt bridge, e.g. Ag ⁺ , Fe ²⁺ , Fe ³⁺ ALLOW ECF as in (i)
		iii	$Ag + Fe^{3+} \longrightarrow Ag^{+} + Fe^{2+} \checkmark$	1	ALLOW ECF as in (i) ALLOW equilibrium sign
		iv	0.43 V ✓	1	ALLOW ECF as in (i)
	b	i	Cl ₂ OR O ₂ AND H ⁺ ✓	1	ALLOW chlorine ALLOW O ₂ AND 4H ⁺ ALLOW O ₂ AND acid DO NOT ALLOW O ₂ alone DO NOT ALLOW equation or equilibrium
		ii	Γ ✓	1	ALLOW 2I ⁻ OR iodide DO NOT ALLOW equation or equilibrium

Question	Expected Answers	Marks	Additional Guidance
С	A fuel cell converts energy from reaction of a fuel with oxygen into a voltage/electrical energy ✓ 2H ₂ + O ₂ → 2H ₂ O ✓ Two from: under pressure OR at low temperature OR as a liquid	5	ANNOTATIONS MUST BE USED ALLOW combustion for reaction of fuel with oxygen/reactants ALLOW a fuel cell requires constant supply of fuel OR operates continuously as long as a fuel (and oxygen) are added ALLOW multiples, e.g. $H_2 + \frac{1}{2}O_2 \rightarrow H_2O$ IGNORE state symbols
	 adsorbed on solid absorbed within solid Energy is needed to make the hydrogen OR energy is needed to make fuel cell 		ALLOW 'material' OR metal for solid ALLOW as a metal hydride
	Total	13	

Qu	esti	on	Expected Answers	Marks	Additional Guidance
5	а		$(K_c =) \frac{[NH_3]^2}{[N_2] [H_2]^3} \checkmark$	1	Must be square brackets
		ii	dm ⁶ mol ⁻² ✓	1	ALLOW mol ⁻² dm ⁶ ALLOW ECF from incorrect K _c expression
	b		Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.	4	ANNOTATIONS MUST BE USED For all parts, ALLOW numerical answers from 2 significant figures up to the calculator value
			$[N_2] = \frac{7.2}{6.0}$ OR 1.2 (mol dm ⁻³)		1st mark is for realising that concentrations need to be calculated.
			AND $[H_2] = \frac{12}{6.0}$ OR 2.0 (mol dm ⁻³) \checkmark $[NH_3] = \sqrt{(K_c \times [N_2] \times [H_2]^3)}$ OR $\sqrt{(8.00 \times 10^{-2} \times 1.2 \times 2.0^3)}$ \checkmark		Correct numerical answer with no working would score all previous calculation marks
			= 0.876 OR 0.88 (mol dm ⁻³) \checkmark		ALLOW calculator value: 0.876356092 down to 0.88, correctly rounded
			amount NH ₃ = $0.876 \times 6 = 5.26$ OR 5.3 (mol) \checkmark		ALLOW calculator value down to 5.3, correctly rounded

EXAMPLES OF INCORRECT RESPONSES IN (b) THAT MAY BE WORTHY OF CREDIT	ALLOW ECF from incorrect concentrations (3 marks) For example, If concentrations not calculated at start, then
	[NH ₃] = $\sqrt{(8.00 \times 10^{-2} \times 7.2 \times 12.0^3)}$ \checkmark = 31.5 mol dm ⁻³ \checkmark Equilibrium amount of NH ₃ = 31.5 \times 6 = 189.6 (mol) \checkmark IF candidate has K_c expression upside down, then all 4 marks are available in (b) by ECF Correct [N ₂] AND [H ₂] \checkmark [NH ₃] = $\sqrt{\frac{[N_2][H_2]^3}{K_c}}$ = = $\sqrt{\frac{1.2 \times 2^3}{8.00 \times 10^{-2}}}$ \checkmark = 11.0 mol dm ⁻³ \checkmark Equilibrium amount of NH ₃ = 11.0 \times 6 = 66.0 (mol) \checkmark ———————————————————————————————————
	LOT . Equilibrium amount of 1413

Quest	ion	Expected Answers	Marks	Additional Guidance
С	i	Equilibrium shifts to right OR Equilibrium towards ammonia ✓ Right hand side has fewer number of (gaseous) moles ✓	2	ALLOW 'moves right' OR 'goes right' OR 'favours right' OR 'goes forwards'
		3		ALLOW 'ammonia side' has fewer moles ALLOW 'there are more (gaseous) moles on left'
	ii	K_c does not change \checkmark Increased pressure increases concentration terms on bottom of K_c expression more than the top OR system is now no longer in equilibrium \checkmark top of K_c expression increases and bottom decreases until K_c is reached \checkmark	3	ANNOTATIONS MUST BE USED Any response in terms of K_c changing scores ZERO for Part (ii) ALLOW K_c is temperature dependent only OR K_c does not change with pressure ALLOW $\frac{[NH_3]^2}{[N_2] [H_2]^3}$ no longer equal to K_c
d	i	$CH_4 + H_2O \longrightarrow 3H_2 + CO \checkmark$	1	State symbols NOT required ALLOW : $CH_4 + H_2O \longrightarrow CH_3OH + H_2$ $CH_4 + 2H_2O \longrightarrow 4H_2 + CO_2$ $CH_4 + H_2O \longrightarrow 2H_2 + HCHO$ $CH_4 + 2H_2O \longrightarrow 3H_2 + HCOOH$
	ii	Electrolysis of water OR $H_2O \longrightarrow H_2 + \frac{1}{2}O_2 \checkmark$	1	ALLOW electrolysis of brine DO NOT ALLOW reforming DO NOT ALLOW cracking DO NOT ALLOW reaction of metal with acid

Que	estic	on	Expected Answers	Marks	Additional Guidance
	е	i	Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED See Appendix 1 for extra guidance for marking 5e(i) and 5e(ii)
			$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$ = $(2 \times 192) - (191 + 3 \times 131) \checkmark$ = $-200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within ΔG expression below) \checkmark		NO UNITS required at this stage IGNORE units
			$\Delta G = \Delta H - T\Delta S$ OR $\Delta G = -92 - (298 \times -0.200)$ OR $\Delta G = -92000 - (298 \times -200) \checkmark$		
			= $-32.4 \text{ kJ mol}^{-1} \text{ OR } -32400 \text{ J mol}^{-1} \checkmark$ (Units must be shown)	5	ALLOW –32.4 kJ OR –32400 J (Units must be shown) Award all 5 marks above for correct answer with no working IF 25 °C has been used instead of 298 K, correctly calculated ΔG values are = -87 kJ mol ⁻¹ OR -87000 J mol ⁻¹
			For feasibility, $\Delta G < 0$ OR ΔG is negative \checkmark	1	4 marks are still available up to this point and maximum possible from (e)(i) is 5 marks
		ii	As the temperature increases, $T \triangle S$ becomes more negative OR $T \triangle S$ becomes more negative than ΔH OR $T \triangle S$ becomes more significant \checkmark	2	ALLOW $T\Delta S > \Delta H$ (i.e. assume no sign at this stage) ALLOW 'entropy term' as alternative for $T\Delta S$ ALLOW $-T\Delta S$ becomes more positive ALLOW $-T\Delta S$ decreases
			Eventually $\Delta H - T\Delta S$ becomes positive \checkmark		ALLOW $\triangle G$ becomes positive OR $\triangle G > 0$

Qı	Question		Expected Answers	Marks	Additional Guidance
		iii	Activation energy is too high OR reaction too slow ✓	1	ALLOW increases the rate OR more molecules exceed activation energy OR more successful collisions ALLOW rate constant increases IGNORE comments on yield
			Total	22	

Qu	Question		Expected Answers	Marks	Additional Guidance
6	6 a i		1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵ 4s ¹ ✓	1	ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ 3d ⁵ (i.e. 4s before 3d) ALLOW [Ar]4s ¹ 3d ⁵ OR [Ar]3d ⁵ 4s ¹
		ii	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ ✓	1	ALLOW [Ar]3d ³ ALLOW 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 4s ⁰ OR [Ar]3d ³ 4s ⁰
	b		$Zn \longrightarrow Zn^{2+} + 2e^{-} \checkmark$ $Cr_2O_7^{2-} + 14H^+ + 8e^{-} \longrightarrow 2Cr^{2+} + 7H_2O \checkmark$	3	WATCH for balancing of the equations printed on paper IF printed equations and answer lines have different balancing numbers OR electrons, IGNORE numbers on printed equations (i.e. treat these as working) and mark responses on answer lines only
			$4Zn + Cr_2O_7^{2-} + 14H^+ \longrightarrow 4Zn^{2+} + 2Cr^{2+} + 7H_2O \checkmark$		NO ECF for overall equation i.e. the expected answer is the ONLY acceptable answer
	С	i	Ligand substitution ✓	1	ALLOW ligand exchange
		ii	$[Cr(H_2O)_6]^{3+}$ + 6NH ₃ \longrightarrow $[Cr(NH_3)_6]^{3+}$ + 6H ₂ O	2	1 mark is awarded for each side of equation ALLOW equilibrium sign ALLOW 1 mark for 2+ shown instead of 3+ on both sides of equation ALLOW 1 mark for substitution of 4 NH ₃ : $[Cr(H_2O)_6]^{3+} + 4NH_3 \longrightarrow [Cr(NH_3)_4(H_2O)_2]^{3+} + 4H_2O$
	d	i	Donates an electron pair to a metal ion OR forms a coordinate bond to a metal ion ✓	1	ALLOW donates an electron pair to a metal ALLOW dative (covalent) bond for coordinate bond
		ii	Donates two electron pairs OR forms two coordinate bonds ✓ Lone pairs on two O atoms ✓	2	First mark is for the idea of two coordinate bonds ALLOW lone pair on O and N
			Lone pairs on two o atoms *		DO NOT ALLOW lone pairs on COO ⁻ (could involve C) Second mark is for the atoms that donate the electron pairs Look for the atoms with lone pairs also on response to (d)(iii) and credit here if not described in (d)(ii)

Question	Expected Answers	Marks	Additional Guidance
Question	-	Marks 3	IGNORE any charges shown ALLOW any attempt to show bidentate ligand. Bottom line is the diagram on the left. 1 mark for 3D diagram with ligands attached for ONE stereoisomer. Must contain 2 out wedges, 2 in wedges and 2 lines in plane of paper:
	For each structure		2nd mark for reflected diagram of SECOND stereoisomer. The diagram below would score the 2nd mark but not the first
			Cr Cr

Question	Expected Answers	Marks	Additional Guidance
е	N : H : Cr : O 11.1/14 : 3.17/1 : 41.27/52 : 44.45/16 OR 0.793 : 3.17 : 0.794 : 2.78 ✓	8	ANNOTATIONS MUST BE USED
	A : N ₂ H ₈ Cr ₂ O ₇ ✓		ALLOW A: $(NH_4)_2Cr_2O_7$
	lons: NH ₄ ⁺ ✓ Cr ₂ O ₇ ²⁻ ✓		IF candidate has obtained NH ₄ CrO ₄ for A, ALLOW NH ₄ ⁺ DO NOT ALLOW CrO ₄ ⁻
	B : Cr ₂ O ₃ ✓		
	Correctly calculates molar mass of C = 1.17 × 24.0 = 28.08 (g mol ⁻¹) ✓		ALLOW: (relative) molecular mass ALLOW: 28 ALLOW: 'C is 28'
	C : N ₂ ✓		
	Equation: $(NH_4)_2Cr_2O_7 \longrightarrow Cr_2O_3 + 4H_2O + N_2 \checkmark$		ALLOW N ₂ H ₈ Cr ₂ O ₇ in equation.
	Total	22	

Qι	ıesti	on	Expected Answers	Marks	Additional Guidance
7	а	i	$H_2O_2 \longrightarrow O_2 + 2H^+ + 2e^- \checkmark \checkmark$	2	All other multiples score 1 mark
					e.g. $\frac{1}{2}$ H ₂ O ₂ $\longrightarrow \frac{1}{2}$ O ₂ + H ⁺ + e ⁻
	٠.				$5H_2O_2 \longrightarrow 5O_2 + 10H^+ + 10e^-$
	b		Marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED
			$n(\text{KMnO}_4) = \frac{0.0200 \times 23.45}{1000} = 4.69 \times 10^{-4} \text{ (mol)} \checkmark$		DO NOT ALLOW 4.7×10^{-4}
			$n(H_2O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol) } \checkmark$		ALLOW 1.173 x 10^{-3} OR 1.17 x 10^{-3} (i.e. 3 significant figures upwards) ALLOW by ECF : $5/2 \times$ ans above
			$n(H_2O_2)$ in 250 cm ³ solution = $10 \times 1.1725 \times 10^{-3} = 1.1725 \times 10^{-2}$ (mol) \checkmark		ALLOW by ECF 10 × ans above ALLOW concentration $H_2O_2 = 0.0469 \text{ mol dm}^{-3}$
			concentration in g dm ⁻³ of original H ₂ O ₂ = $40 \times 1.1725 \times 10^{-2} \times 34 = 15.9$ (g dm ⁻³) \checkmark	4	ALLOW by ECF $40 \times n(H_2O_2) \times 34$ ALLOW $0.0469 \times 10 \times 34 = 15.9 \text{ g dm}^{-3} \checkmark$
					ALLOW two significant figures, 16 (g dm ⁻³) up to calculator value of 15.946 g dm ⁻³
			$n(O_2) = 5/2 \times 4.69 \times 10^{-4} = 1.1725 \times 10^{-3} \text{ (mol) } \checkmark$ volume $O_2 = 24.0 \times 1.1725 \times 10^{-3} = 0.0281 \text{ dm}^3 \checkmark$	2	ALLOW 0.028 dm ³ OR 0.02814 dm ³ ALLOW 28 cm ³ OR 28.14 cm ³ Value AND units required DO NOT ALLOW 0.03 dm ³
					ALLOW by ECF : $24.0 \times$ calculated moles of O_2 (2 significant figures up to calculator value)
			Total	8	

Appendix 1

Extra guidance for marking atypical responses to **5e(i)** and **5e(ii)**

Qu	Question		Expected Answer	Mark	Additional Guidance
5	е	i	TOTAL ENTROPY APPROACH: ALL MARKS AVAILABLE Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived. $\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) / \\ = (2 \times 192) - (191 + 3 \times 131) \checkmark \\ = -200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within expression below) \checkmark		NO UNITS required at this stage IGNORE units
			$\Delta S_{\text{total}} = \Delta S_{\text{system}} + \Delta S_{\text{surroundings}}$ $\Delta S_{\text{surroundings}} = -\frac{\Delta H}{T}$ OR $\Delta S_{\text{total}} = \Delta S_{\text{system}} - \frac{\Delta H}{T}$ OR $\Delta S_{\text{total}} = -0.200 - \frac{-92}{298}$ OR $\Delta S_{\text{total}} = -200 - \frac{-92000}{298} \checkmark$ = 0.109 kJ (K ⁻¹ mol ⁻¹) OR 109 J (K ⁻¹ mol ⁻¹) \checkmark Feasible when $\Delta S_{\text{total}} > 0 \checkmark$	5	ALLOW 0.109 kJ OR 109 J IF 25°C has been used instead of 298 K, correctly calculated ΔS_{total} values are = 3.48 kJ K ⁻¹ mol ⁻¹ OR 3,480 J K ⁻¹ mol ⁻¹

Qı	ıesti	on	Expected Answer	Mark	Additional Guidance
5	е	i	MAX/MIN TEMPERATURE APPROACH: 5 MARKS MAX AVAILABLE Unless otherwise stated, marks are for correctly calculated values. Working shows how values have been derived.		ANNOTATIONS MUST BE USED This candidate has not answered the question but many marks are still available.
			$\Delta S = \Sigma S(\text{products}) - \Sigma S(\text{reactants}) /$ = $(2 \times 192) - (191 + 3 \times 131) \checkmark$ = $-200 \text{ (J K}^{-1} \text{ mol}^{-1}) \text{ OR } -0.200 \text{ (kJ K}^{-1} \text{ mol}^{-1}) \checkmark$ Use of 298 K (could be within ΔG expression below) \checkmark		NO UNITS required at this stage IGNORE units
			$\Delta G = \Delta H - T\Delta S$ OR When $\Delta G = 0$, $0 = \Delta H - T\Delta S$; OR $T = \frac{\Delta H}{\Delta S} = \frac{-92}{-0.200}$ OR $T = \frac{\Delta H}{\Delta S} = \frac{-92000}{-200}$ $= 460 \text{ K} \checkmark$ $= 187 ^{\circ}\text{C} \text{ (use of 298)} \checkmark$		
			The condition ΔG = 0 because temperature at which ΔG = 0 is the maximum temperature for feasibility AND justification for the being the maximum \checkmark		By this approach, the calculated temperature is the switchover between feasibility and non-feasibility but it cannot be assumed that this is the maximum temperature

Quest	tion	Expected Answer	Mark	Additional Guidance
5 e	e lii	As the temperature increases, $\Delta H/T$ becomes less negative OR $\Delta H/T$ becomes more negative than $\Delta S(\text{system})$ OR $\Delta H/T$ becomes less significant OR $\Delta S(\text{surroundings})$ becomes less significant OR $\Delta S(\text{system}) > \Delta H/T$ OR $\Delta S(\text{system}) > \Delta S(\text{surroundings})$ \checkmark Eventually $\Delta S(\text{total})$ becomes negative \checkmark	2	ALLOW $\triangle H/T > \triangle S_{\text{system}}$ (i.e. assume no sign at this stage) ALLOW $-\triangle H/T$ becomes more positive ALLOW $-\triangle H/T$ increases

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU

OCR Customer Contact Centre

14 – 19 Qualifications (General)

Telephone: 01223 553998 Facsimile: 01223 552627

Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations)

Head office

Telephone: 01223 552552 Facsimile: 01223 552553

