University of Durham EXAMINATION PAPER

May/June 2008

 $043551/01 \\ 044191/01$

LEVEL 3 PHYSICS: THEORETICAL PHYSICS LEVEL 4 PHYSICS: THEORETICAL PHYSICS 4

SECTION A. QUANTUM MECHANICS **SECTION B.** SPECIAL RELATIVITY AND ELECTROMAGNETISM

Time allowed : 3 hours

Examination material provided : None

Answer the compulsory question that heads each of sections A and B. These **two** questions have a total of 15 parts and carry 50% of the total marks for the paper. Answer **three** of the other questions with **at least one** from each section. If you attempt more than the required number of questions only those with the lowest question number compatible with the rubric will be marked: **clearly delete** those that are not to be marked. The marks shown in brackets for the main parts of each question are given as a guide to the weighting the markers expect to apply.

ANSWER EACH SECTION IN A SEPARATE ANSWER BOOK

APPROVED TYPES OF CALCULATOR MAY BE USED.

Information

$e = 1.60 \times 10^{-19} \text{ C}$	$c = 3.00 \times 10^8 \mathrm{m s^{-1}}$
$k_{\rm B} = 1.38 \times 10^{-23} \ {\rm J} {\rm K}^{-1}$	$m_{\rm e}=9.11\times 10^{-31}~{\rm kg}$
$G = 6.67 \times 10^{-11} \ \mathrm{N m^2 kg^{-2}}$	$m_{\rm p} = 1.67 \times 10^{-27} \ \rm kg$
$h = 6.63 \times 10^{-34} \text{ Js}$	$\epsilon_0 = 8.85 \times 10^{-12} \ \mathrm{F m^{-1}}$
Bohr magneton = $9.27 \times 10^{-24} \mathrm{J T}^{-1}$	$\mu_0 = 4\pi \times 10^{-7} \ \mathrm{H} \mathrm{m}^{-1}$
Nuclear magneton = $5.05 \times 10^{-27} \mathrm{J T}^{-1}$	$R = 8.31 \times 10^3 \; \mathrm{J \: K^{-1} \: kmol^{-1}}$
Avogadro's Constant = $6.02 \times 10^{26} \text{ kmol}^{-1}$	$g = 9.81 \text{ m s}^{-2}$
Stefan-Boltzmann Constant = 5.67×10^{-8} W m ⁻² K ⁻⁴	

SECTION A. QUANTUM MECHANICS

Answer question 1 and **at least one** of questions 2, 3 and 4.

1. (a) Consider an operator \hat{A} on a Hilbert space \mathcal{H} . Give the definition of an Hermitian operator. Show that, if an operator \hat{A} is Hermitian, the expectation value of \hat{A}^2 on a state $|\gamma\rangle$ satisfies $\langle \hat{A}^2 \rangle \geq 0$. [4 marks]

[Hint: Recall the property of the scalar product: $\langle \phi | \phi \rangle \geq 0$.]

- (b) State the generalised uncertainty relation for two operators \hat{A} and \hat{B} . Consider a system which is in an eigenstate of \hat{L}_z , $|l, m\rangle$. What is the minimal uncertainty in a simultaneous measurement of \hat{L}_x and \hat{L}_y ? [4 marks]
- (c) Consider a deuterium molecule D_2 whose Hamiltonian is $\hat{H} = \hat{L}^2/(2I)$. Here, $I = 2Ma^2$, with M the mass of the molecule and a the distance between the atoms.

Write down the commutation relations for the components of the orbital angular momentum, \hat{L}_i .

Which of the sets of observables corresponding to $\{\hat{H}, \hat{L}_z\}$, $\{\hat{H}, \hat{L}_x\}$, $\{\hat{H}, \hat{L}_x, \hat{L}_z\}$, $\{\hat{H}, \hat{L}_x + \hat{L}_y, \hat{L}_z\}$ can be measured simultaneously with infinite precision? [4 marks]

(d) Consider a deuterium molecule as in (c). At t = 0 the system is described by the state

$$|\psi, t = 0\rangle = \frac{3|1, 1\rangle + 4|7, 3\rangle + |7, 1\rangle}{\sqrt{26}}$$

Recall that $|l, m\rangle$ are eigenstates of \hat{L}^2 and \hat{L}_z and are normalised.

At t = 0, what are the values of L^2 and L_z a measurement can yield and with what probability?

At t = 0, L_z is measured and the value $3\hbar$ is found. What is the state which describes the system after the measurement? If at a subsequent time t_1 we measure L_x , will the system be in an eigenstate of L_z after the measurement? [4 marks]

(e) The operator \hat{b} satisfies the following anticommutation relations:

$$\{\hat{b}, \hat{b}^{\dagger}\} = \hat{b}\hat{b}^{\dagger} + \hat{b}^{\dagger}\hat{b} = \hat{I} \text{ and } \{\hat{b}, \hat{b}\} = 0, \ \{\hat{b}^{\dagger}, \hat{b}^{\dagger}\} = 0.$$

 \hat{I} denotes the identity operator. The operator \hat{N} is defined as $\hat{N} = \hat{b}^{\dagger}\hat{b}$. Show that $\hat{N}^2 = \hat{N}$ and find the eigenvalues of \hat{N} . [4 marks]

(f) Consider a system with a time-independent Hamiltonian \hat{H} . The eigenstates of \hat{H} are $|a_n\rangle$ with eigenvalues E_n . At time t = 0 the system is described by the state $|\psi\rangle$.

State the time-dependent Schrödinger equation and formally solve it. If at t = 0 the system is an eigenstate $|a_n\rangle$, what is the result of a measurement of the energy at a later time t? [4 marks] (g) The Born approximation for the scattering amplitude is

$$f^B(\Omega) = -\frac{(2\pi)^2 \mu}{\hbar^2} \langle \vec{k}' | V(\vec{r}) | \vec{k} \rangle \text{ with } |\vec{k}'| = |\vec{k}| \,.$$

 Ω indicates the angles θ and ϕ in spherical coordinates. μ is the reduced mass of the system. For central potentials, V(r), it can be rewritten as $f^B(\Omega) = -\frac{2\mu}{\hbar^2 q} \int_0^\infty dr \ r V(r) \sin(qr)$, where $\vec{q} = \vec{k} - \vec{k'}$.

In the sharp-momentum approximation, find the differential cross section $\frac{d\sigma}{d\Omega}$ for the screened Coulomb potential $V_{sC}(r) = -\frac{e^{-ra}}{r}$, with a constant.

[Hint:
$$\int_0^\infty dr \ e^{-ra} \sin(qr) = \frac{q}{q^2 + a^2}$$
.]

Using the previous result, compute the differential cross section $\frac{d\sigma}{d\Omega}$ for the Coulomb potential $V_C(r) = -\frac{1}{r}$ and compare it with the exact quantal result:

$$\frac{d\sigma}{d\Omega} = \frac{(2\mu)^2}{(2\hbar k)^4} \frac{1}{\sin^4(\theta/2)} \,.$$

[4 marks]

[Hint:
$$q = 2k\sin(\theta/2)$$
]

2. Consider a non-relativistic particle of mass m in a 3D spherical box. The central potential is given by:

$$V(r) = \begin{cases} 0 & \text{for } r < a \\ \infty & \text{for } r \ge a \end{cases}$$

- (a) Write the Hamiltonian for the particle. Does \hat{H} commute with \hat{L}^2 and \hat{L}_z ? Give a short justification for your answer. What does this imply for the eigenstates of the Hamiltonian? [7 marks]
- (b) Expressing the eigenfunctions of the Hamiltonian in spherical coordinates as $\psi_{nlm}(r,\theta,\phi) = R_{nl}(r)Y_{lm}(\theta,\phi)$, with $Y_{lm}(\theta,\phi)$ the spherical harmonics, the reduced radial equation for $u_{nl}(r) = rR_{nl}(r)$ is:

$$\left(-\frac{\hbar^2}{2m}\left(\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2}\right) + V(r)\right)u_{nl}(r) = E_{nl} \ u_{nl}(r) \,.$$

Discuss the asymptotic behaviour of $u_{nl}(r)$ for $r \to 0$. [3 marks]

(c) For l = 0, find $R_{nl}(r)$ by solving the reduced radial equation in terms of trigonometric functions (there is no need to normalise $R_{nl}(r)$), and show that the eigenvalues of the energy are $E_{n0} = \frac{n^2 \hbar^2 \pi^2}{2ma^2}$ for $n \ge 1$. [6 marks]

- (d) Obtain an order of magnitude for the energy of the ground state E_{10} by estimating p_r , Δp_r , and using $E_{10} = (\Delta p_r)^2/2m$. To do this, first compute $[\hat{p}_r, \hat{r}]$ recalling that the coordinate representation of \hat{p}_r is $-i\hbar \frac{1}{r} \frac{d}{dr}r$, then use the generalised uncertainty relation for \hat{p}_r and r to obtain an order of magnitude value for Δp_r . Finally, get an estimate for the energy. [4 marks]
- 3. Neutrinos can be described by the flavour states $|\nu_e\rangle$ and $|\nu_{\mu}\rangle$ or by the massive states $|\nu_1\rangle$ and $|\nu_2\rangle$. The massive states are the eigenstates of the Hamiltonian \hat{H}_0 , with eigenvalues $E_1 = \sqrt{p^2 c^2 + m_1^2 c^4} \simeq pc + \frac{m_1^2 c^4}{2pc}$ and $E_2 = \sqrt{p^2 c^2 + m_2^2 c^4} \simeq pc + \frac{m_2^2 c^4}{2pc}$. p is the common momentum, c the velocity of light, while m_1 and m_2 indicate the respective masses of $|\nu_1\rangle$ and $|\nu_2\rangle$, and both masses are much less than p/c. The two bases are related by a unitary transformation U, using the mixing angle θ :

$$\left(\begin{array}{c} |\nu_e\rangle\\ |\nu_\mu\rangle\end{array}\right) = \left(\begin{array}{c} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta\end{array}\right) \left(\begin{array}{c} |\nu_1\rangle\\ |\nu_2\rangle\end{array}\right) \,.$$

- (a) Write the matrix representation of the Hamiltonian \hat{H}_0 in the massive basis, $|\nu_1\rangle$ and $|\nu_2\rangle$. [1 mark]
- (b) Show that the matrix representation of the Hamiltonian \hat{H}_0 in the flavour basis, $|\nu_e\rangle$ and $|\nu_{\mu}\rangle$, is:

$$H_0|_{\nu_e,\nu_\mu} = \begin{pmatrix} E_1 \cos^2 \theta + E_2 \sin^2 \theta & (E_2 - E_1) \sin \theta \cos \theta \\ (E_2 - E_1) \sin \theta \cos \theta & E_1 \sin^2 \theta + E_2 \cos^2 \theta \end{pmatrix}$$

[6 marks]

(c) Compute the eigenvalues of $H_0|_{\nu_e,\nu_\mu}$. Are they the same as the ones in the massive basis? [3 marks]

When neutrinos traverse the Earth, they interact very weakly with the electrons, protons and neutrons contained in the atoms. This effect is included in the Hamiltonian in matter, $H_{\rm m}$, which, in the flavour basis, is given by:

$$H_{\rm m} = \begin{pmatrix} -\Delta m_{21}^2 \cos(2\theta) \frac{c^4}{4pc} & \Delta m_{21}^2 \sin(2\theta) \frac{c^4}{4pc} \\ \Delta m_{21}^2 \sin(2\theta) \frac{c^4}{4pc} & \Delta m_{21}^2 \cos(2\theta) \frac{c^4}{4pc} \end{pmatrix} + \begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}.$$

A, real and > 0, depends on the density of electrons. $\Delta m_{21}^2 = m_2^2 - m_1^2$.

(d) Find $\tan(2\theta_m)$, θ_m being the mixing angle which relates the flavour basis to the eigenbase of H_m . [2 marks]

[Hint:
$$\tan(2\theta_m) = \frac{2H_{12}^m}{H_{22}^m - H_{11}^m}$$
, where H_{ij}^m are the elements of H_m .]

(e) For small θ in vacuum, discuss how the mixing angle θ_m changes depending on A, for $\Delta m_{21}^2 > 0$. In particular, consider the cases of $A \ll \Delta m_{21}^2 \cos(2\theta) \frac{c^4}{2pc}$, $A \gg \Delta m_{21}^2 \cos(2\theta) \frac{c^4}{2pc}$ and $A = \Delta m_{21}^2 \cos(2\theta) \frac{c^4}{2pc}$. [4 marks]

(f) The probability of ν_e oscillating into ν_{μ} at a time t in matter is given by $P(\nu_e \rightarrow \nu_{\mu}, t) = \sin^2(2\theta_m) \sin^2((E_1^m - E_2^m)t/2)$. E_1^m and E_2^m are the eigenvalues of H_m . Considering a sufficiently long time t such that $\sin^2((E_1^m - E_2^m)t/2) \sim 1$, and an experiment in which $A = 0.3 \Delta m_{21}^2 \cos(2\theta) \frac{c^4}{2pc}$, is the probability of oscillation enhanced or suppressed for $\Delta m_{21}^2 > 0$, with respect to oscillations in vacuum? Similarly for $\Delta m_{21}^2 < 0$? [4 marks]

[Hint: Express $\sin^2(2\theta_m)$ as a function of $\tan^2(2\theta_m)$.]

- 4. The spin angular operator $\hat{\vec{S}}$ can be written in terms of the Pauli spin operators, $\hat{\vec{\sigma}}$, as: $\hat{\vec{S}} = \frac{\hbar}{2}\hat{\vec{\sigma}}$.
 - (a) In the eigenbase of \hat{S}_z , denoted $|+\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|-\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, write the matrix representations of \hat{S}_x , \hat{S}_y , \hat{S}_z and \hat{S}^2 . [4 marks]

[Hint: Recall that the Pauli matrices are given by $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$,

 $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \text{ and that they are the matrix}$ representation of the Pauli operators in the eigenbase of \hat{S}_z .

Consider a spin-1/2 particle which is in a state $|\gamma\rangle$:

$$|\gamma\rangle = a|+\rangle + b|-\rangle ,$$

with $|a|^2 + |b|^2 = 1$.

- (b) Write $|\gamma\rangle$ as a column vector in the matrix representation in the eigenbase of \hat{S}_z . Compute the expectation values $\langle \hat{S}_x \rangle$, $\langle \hat{S}_y \rangle$ and $\langle \hat{S}_z \rangle$ for the state $|\gamma\rangle$. [6 marks]
- (c) What will be the respective probabilities that a measurement of \hat{S}_z finds $\hbar/2$ and $-\hbar/2$ for $|\gamma\rangle$? [2 marks]
- (d) What will be the probability that a measurement of \hat{S}_x finds $\hbar/2$ for $|\gamma\rangle$? [4 marks]

[Hint: First find the eigenvalues and eigenvectors of \hat{S}_x .]

(e) Show that it is impossible for a spin 1/2 particle to be in a state $|\xi\rangle = c |+\rangle + d |-\rangle$ (normalised, i.e. $|c|^2 + |d|^2 = 1$) such that

$$\langle \hat{S}_x \rangle = 0, \qquad \langle \hat{S}_y \rangle = 0, \qquad \langle \hat{S}_z \rangle = 0 \; .$$

[4 marks]

SECTION B. SPECIAL RELATIVITY AND ELECTROMAGNETISM Answer question 5 and **at least one** of questions 6, 7 and 8.

- 5. (a) Muons have a rest mass of 106 MeV/c^2 and an average lifetime of 2.4×10^{-6} s. If a muon has an energy of 180 MeV, how far on average does it travel before it decays? [4 marks]
 - (b) Find the matrix $\Lambda^{\mu}{}_{\nu}$ of a Lorentz transformation that is obtained by first boosting with velocity v along the x-axis and then rotating about the x-axis through an angle α . Does it matter in which order the boost and the rotation are performed? [4 marks]
 - (c) Give the definition of the dual field-strength tensor $\tilde{F}^{\mu\nu}$ in terms of the 4-potential. Use this definition to show $\partial_{\mu}\tilde{F}^{\mu\nu} = 0$. [4 marks]
 - (d) A certain 4-vector w^{μ} related to a particle of rest mass m and velocity \underline{v} has spatial components $\underline{w} = 2c\gamma(v)\underline{v}/m$. Find w^0 . [4 marks]
 - (e) Two protons collide head-on to produce two protons and a pion, $p p \rightarrow p p \pi$. Find the minimal relative velocity of the incoming protons which allows this process to take place. [4 marks]

[Hint: the rest mass of the proton and pion are given by $m_p = 940 \text{ MeV}/c^2$ and $m_{\pi} = 140 \text{ MeV}/c^2$ respectively.]

- (f) Consider a rod of proper length l_0 . Show that there is no length contraction if an observer moves perpendicular to the direction of the rod. [4 marks]
- (g) Express the 0-component of the Maxwell equation $\partial_{\mu}F^{\mu\nu} = j^{\nu}/(c \epsilon_0)$ in terms of the electric and magnetic fields. [Hint: see question 6 for the definition of $F^{\mu\nu}$.] [4 marks]
- (h) The Lagrangian for a free, relativistic particle of rest mass m moving with velocity v is given by $\mathcal{L} = k c/\gamma(v)$. Use the non-relativistic limit to determine k. [4 marks]

6. We consider a point charge q of rest mass m in an electromagnetic field specified by the field-strength tensor

$$F^{\mu\nu} = \begin{pmatrix} 0 & -E_x & -E_y & -E_z \\ E_x & 0 & -cB_z & cB_y \\ E_y & cB_z & 0 & -cB_x \\ E_z & -cB_y & cB_x & 0 \end{pmatrix} \,.$$

The 4-force f^{μ} acting on the point charge is defined by

$$f^{\mu} \equiv \frac{dp^{\mu}}{d\tau} \, , \label{eq:f_phi}$$

where τ and p^{μ} are the proper time and 4-momentum of the point charge.

- (a) Show that f^{μ} is a 4-vector and find its relation to the usual force $\underline{F} \equiv dp/dt$. [4 marks]
- (b) The 4-force acting on the point charge due to the electromagnetic field is given by

$$f^{\mu} = \frac{q}{c} F^{\mu\nu} u_{\nu} \,,$$

where u_{ν} is the 4-velocity of the point charge. Show that the spatial components of this equation correspond to the Lorentz force law. Derive and interpret the additional equation due to the 0-component of the above equation. [8 marks]

(c) The point charge is injected into a pure, constant magnetic field \underline{B} . Given that the initial velocity \underline{v} of the point charge is perpendicular to \underline{B} show that the point charge moves with constant speed on a circle. Compute the radius of the circle. What happens if the initial velocity is not perpendicular to \underline{B} ? [8 marks] 7. Let S and S' be two inertial frames in standard configuration (S' is moving with velocity v along the x-axis and at t = t' = 0 the two frames coincide). The potential ϕ and vector potential <u>A</u> are the components of the 4-potential $A^{\mu} = (\phi, c \underline{A})$ and are related to the electric and magnetic fields <u>E</u> and <u>B</u> by

$$\underline{E} = -\underline{\nabla}\phi - \frac{\partial \underline{A}}{\partial t}$$
 and $\underline{B} = \underline{\nabla} \times \underline{A}$.

- (a) An observer at rest in S measures a certain value for ϕ and \underline{A} at some point in Minkowski space. Find ϕ' and \underline{A}' , the potential and vector potential at the same point, as seen by an observer at rest in S'. [4 marks]
- (b) Given \underline{E} and \underline{B} as seen by an observer at rest in S, use the transformation property of A^{μ} to determine the z-component of the electric field and the x-component of the magnetic field as seen by an observer at rest in S'. [8 marks]
- (c) An observer at rest in S sees a pure electric field, i.e. $\underline{B} = 0$, due to a point charge at rest. Find all inertial frames S'' where the corresponding electromagnetic field is also a pure electric field. [4 marks]
- (d) Show that \underline{E} and \underline{B} are not affected by gauge transformations

$$\phi \to \phi - \frac{\partial \psi}{\partial t}, \qquad \underline{A} \to \underline{A} + \underline{\nabla} \psi \ ,$$

where $\psi(t, \underline{x})$ is an arbitrary function. Write the gauge transformations in covariant form. [4 marks]

8. Consider two particles with rest masses m_1 and m_2 just prior to a head-on collision in their centre-of-mass frame S. Their energies in S are given by E_1 and E_2 respectively and we denote their 4-momenta by $p_1^{\mu} = (E_1/c, \underline{p}_1)$ and $p_2^{\mu} = (E_2/c, \underline{p}_2)$. The invariant mass M of the pair is defined through $c^2 M^2 \equiv (p_1 + p_2)^2$.

Express the total centre-of-mass energy $E_1 + E_2$ in terms of Lorentz-invariant quantities. [4 marks]

The laboratory frame S_L is the rest frame of particle 2. Compute the energy of particle 1 in S_L in terms of M, m_1 and m_2 and use this result to show that

$$\underline{p}_L^2 = \frac{c^2}{4m_2^2} \left[M^2 - (m_1 + m_2)^2 \right] \left[M^2 - (m_1 - m_2)^2 \right],$$

where \underline{p}_{L} is the momentum of particle 1 in S_{L} . [6 marks]

Compute the relative velocity of S_L and S and express it in terms of E_2 and \underline{p}_1 . [5 marks]

At the HERA collider electrons with an energy of 30 GeV = 3×10^4 MeV collide head on with protons of energy 820 GeV. Given that the rest masses of the electron and proton are $m_e = 0.5$ MeV/ c^2 and $m_p = 940$ MeV/ c^2 , compute the invariant mass M of such an electron-proton pair. If the same invariant mass was to be obtained in a fixed-target experiment, i.e. with a proton at rest, to what energy would the electron have to be accelerated? [5 marks]