University of Durham
 EXAMINATION PAPER

043551/01
May/June 2008
044191/01

LEVEL 3 PHYSICS: THEORETICAL PHYSICS

LEVEL 4 PHYSICS: THEORETICAL PHYSICS 4

SECTION A. QUANTUM MECHANICS
SECTION B. SPECIAL RELATIVITY AND ELECTROMAGNETISM

Time allowed : 3 hours

Examination material provided : None
Answer the compulsory question that heads each of sections A and B. These two questions have a total of 15 parts and carry 50% of the total marks for the paper. Answer three of the other questions with at least one from each section. If you attempt more than the required number of questions only those with the lowest question number compatible with the rubric will be marked: clearly delete those that are not to be marked. The marks shown in brackets for the main parts of each question are given as a guide to the weighting the markers expect to apply.

ANSWER EACH SECTION IN A SEPARATE ANSWER BOOK

APPROVED TYPES OF CALCULATOR MAY BE USED.

Information

$$
\begin{array}{ll}
e=1.60 \times 10^{-19} \mathrm{C} & c=3.00 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1} \\
k_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} \mathrm{~K}^{-1} & m_{\mathrm{e}}=9.11 \times 10^{-31} \mathrm{~kg} \\
G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} \mathrm{~kg}^{-2} & m_{\mathrm{p}}=1.67 \times 10^{-27} \mathrm{~kg} \\
h=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} & \epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} \mathrm{~m}^{-1} \\
\text { Bohr magneton }=9.27 \times 10^{-24} \mathrm{~J} \mathrm{~T}^{-1} & \mu_{0}=4 \pi \times 10^{-7} \mathrm{H} \mathrm{~m}^{-1} \\
\text { Nuclear magneton }=5.05 \times 10^{-27} \mathrm{~J} \mathrm{~T}^{-1} & R=8.31 \times 10^{3} \mathrm{~J} \mathrm{~K}^{-1} \mathrm{kmol}^{-1} \\
\text { Avogadro's Constant }=6.02 \times 10^{26} \mathrm{kmol}^{-1} & g=9.81 \mathrm{~m} \mathrm{~s}^{-2} \\
\text { Stefan-Boltzmann Constant }=5.67 \times 10^{-8} \mathrm{~W} \mathrm{~m}^{-2} \mathrm{~K}^{-4} &
\end{array}
$$

SECTION A. QUANTUM MECHANICS

Answer question 1 and at least one of questions 2, 3 and 4.

1. (a) Consider an operator \hat{A} on a Hilbert space \mathcal{H}. Give the definition of an Hermitian operator.
Show that, if an operator \hat{A} is Hermitian, the expectation value of \hat{A}^{2} on a state $|\gamma\rangle$ satisfies $\left\langle\hat{A}^{2}\right\rangle \geq 0$. [4 marks]
[Hint: Recall the property of the scalar product: $\langle\phi \mid \phi\rangle \geq 0$.]
(b) State the generalised uncertainty relation for two operators \hat{A} and \hat{B}. Consider a system which is in an eigenstate of $\hat{L}_{z},|l, m\rangle$. What is the minimal uncertainty in a simultaneous measurement of \hat{L}_{x} and \hat{L}_{y} ? [4 marks]
(c) Consider a deuterium molecule D_{2} whose Hamiltonian is $\hat{H}=\hat{L}^{2} /(2 I)$. Here, $I=2 M a^{2}$, with M the mass of the molecule and a the distance between the atoms.
Write down the commutation relations for the components of the orbital angular momentum, \hat{L}_{i}.
Which of the sets of observables corresponding to $\left\{\hat{H}, \hat{L}_{z}\right\},\left\{\hat{H}, \hat{L}_{x}\right\}$, $\left\{\hat{H}, \hat{L}_{x}, \hat{L}_{z}\right\},\left\{\hat{H}, \hat{L}_{x}+\hat{L}_{y}, \hat{L}_{z}\right\}$ can be measured simultaneously with infinite precision? [4 marks]
(d) Consider a deuterium molecule as in (c). At $t=0$ the system is described by the state

$$
|\psi, t=0\rangle=\frac{3|1,1\rangle+4|7,3\rangle+|7,1\rangle}{\sqrt{26}} .
$$

Recall that $|l, m\rangle$ are eigenstates of \hat{L}^{2} and \hat{L}_{z} and are normalised.
At $t=0$, what are the values of L^{2} and L_{z} a measurement can yield and with what probability?
At $t=0, L_{z}$ is measured and the value $3 \hbar$ is found. What is the state which describes the system after the measurement? If at a subsequent time t_{1} we measure L_{x}, will the system be in an eigenstate of L_{z} after the measurement? [4 marks]
(e) The operator \hat{b} satisfies the following anticommutation relations:

$$
\left\{\hat{b}, \hat{b}^{\dagger}\right\}=\hat{b}^{\dagger}+\hat{b}^{\dagger} \hat{b}=\hat{I} \text { and }\{\hat{b}, \hat{b}\}=0,\left\{\hat{b}^{\dagger}, \hat{b}^{\dagger}\right\}=0
$$

\hat{I} denotes the identity operator. The operator \hat{N} is defined as $\hat{N}=\hat{b}^{\dagger} \hat{b}$. Show that $\hat{N}^{2}=\hat{N}$ and find the eigenvalues of \hat{N}. [4 marks]
(f) Consider a system with a time-independent Hamiltonian \hat{H}. The eigenstates of \hat{H} are $\left|a_{n}\right\rangle$ with eigenvalues E_{n}. At time $t=0$ the system is described by the state $|\psi\rangle$.
State the time-dependent Schrödinger equation and formally solve it. If at $t=0$ the system is an eigenstate $\left|a_{n}\right\rangle$, what is the result of a measurement of the energy at a later time t ? [4 marks]
(g) The Born approximation for the scattering amplitude is

$$
f^{B}(\Omega)=-\frac{(2 \pi)^{2} \mu}{\hbar^{2}}\left\langle\overrightarrow{k^{\prime}}\right| V(\vec{r})|\vec{k}\rangle \text { with }\left|\overrightarrow{k^{\prime}}\right|=|\vec{k}| .
$$

Ω indicates the angles θ and ϕ in spherical coordinates. μ is the reduced mass of the system. For central potentials, $V(r)$, it can be rewritten as $f^{B}(\Omega)=-\frac{2 \mu}{\hbar^{2} q} \int_{0}^{\infty} d r r V(r) \sin (q r)$, where $\vec{q}=\vec{k}-\vec{k}^{\prime}$.
In the sharp-momentum approximation, find the differential cross section $\frac{d \sigma}{d \Omega}$ for the screened Coulomb potential $V_{s C}(r)=-\frac{e^{-r a}}{r}$, with a constant.

$$
\left[\text { Hint: } \int_{0}^{\infty} d r e^{-r a} \sin (q r)=\frac{q}{q^{2}+a^{2}} .\right]
$$

Using the previous result, compute the differential cross section $\frac{d \sigma}{d \Omega}$ for the Coulomb potential $V_{C}(r)=-\frac{1}{r}$ and compare it with the exact quantal result:

$$
\frac{d \sigma}{d \Omega}=\frac{(2 \mu)^{2}}{(2 \hbar k)^{4}} \frac{1}{\sin ^{4}(\theta / 2)}
$$

[4 marks]

$$
\text { [Hint: } q=2 k \sin (\theta / 2) \text {] }
$$

2. Consider a non-relativistic particle of mass m in a 3D spherical box. The central potential is given by:

$$
V(r)=\left\{\begin{array}{cc}
0 & \text { for } r<a \\
\infty & \text { for } r \geq a
\end{array}\right.
$$

(a) Write the Hamiltonian for the particle. Does \hat{H} commute with \hat{L}^{2} and \hat{L}_{z} ? Give a short justification for your answer. What does this imply for the eigenstates of the Hamiltonian? [7 marks]
(b) Expressing the eigenfunctions of the Hamiltonian in spherical coordinates as $\psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi)$, with $Y_{l m}(\theta, \phi)$ the spherical harmonics, the reduced radial equation for $u_{n l}(r)=r R_{n l}(r)$ is:

$$
\left(-\frac{\hbar^{2}}{2 m}\left(\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}\right)+V(r)\right) u_{n l}(r)=E_{n l} u_{n l}(r) .
$$

Discuss the asymptotic behaviour of $u_{n l}(r)$ for $r \rightarrow 0$. [3 marks]
(c) For $l=0$, find $R_{n l}(r)$ by solving the reduced radial equation in terms of trigonometric functions (there is no need to normalise $R_{n l}(r)$), and show that the eigenvalues of the energy are $E_{n 0}=\frac{n^{2} \hbar^{2} \pi^{2}}{2 m a^{2}}$ for $n \geq 1$. [6 marks]
(d) Obtain an order of magnitude for the energy of the ground state E_{10} by estimating $p_{r}, \Delta p_{r}$, and using $E_{10}=\left(\Delta p_{r}\right)^{2} / 2 m$. To do this, first compute $\left[\hat{p}_{r}, \hat{r}\right]$ recalling that the coordinate representation of \hat{p}_{r} is $-i \hbar \frac{1}{r} \frac{d}{d r} r$, then use the generalised uncertainty relation for \hat{p}_{r} and r to obtain an order of magnitude value for Δp_{r}. Finally, get an estimate for the energy. [4 marks]
3. Neutrinos can be described by the flavour states $\left|\nu_{e}\right\rangle$ and $\left|\nu_{\mu}\right\rangle$ or by the massive states $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$. The massive states are the eigenstates of the Hamiltonian \hat{H}_{0}, with eigenvalues $E_{1}=\sqrt{p^{2} c^{2}+m_{1}^{2} c^{4}} \simeq p c+\frac{m_{1}^{2} c^{4}}{2 p c}$ and $E_{2}=\sqrt{p^{2} c^{2}+m_{2}^{2} c^{4}} \simeq p c+\frac{m_{2}^{2} c^{4}}{2 p c} . \quad p$ is the common momentum, c the velocity of light, while m_{1} and m_{2} indicate the respective masses of $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$, and both masses are much less than p / c. The two bases are related by a unitary transformation U, using the mixing angle θ :

$$
\binom{\left|\nu_{e}\right\rangle}{\left|\nu_{\mu}\right\rangle}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)\binom{\left|\nu_{1}\right\rangle}{\left|\nu_{2}\right\rangle} .
$$

(a) Write the matrix representation of the Hamiltonian \hat{H}_{0} in the massive basis, $\left|\nu_{1}\right\rangle$ and $\left|\nu_{2}\right\rangle$. [1 mark]
(b) Show that the matrix representation of the Hamiltonian \hat{H}_{0} in the flavour basis, $\left|\nu_{e}\right\rangle$ and $\left|\nu_{\mu}\right\rangle$, is:

$$
\left.H_{0}\right|_{\nu_{e}, \nu_{\mu}}=\left(\begin{array}{cc}
E_{1} \cos ^{2} \theta+E_{2} \sin ^{2} \theta & \left(E_{2}-E_{1}\right) \sin \theta \cos \theta \\
\left(E_{2}-E_{1}\right) \sin \theta \cos \theta & E_{1} \sin ^{2} \theta+E_{2} \cos ^{2} \theta
\end{array}\right)
$$

[6 marks]
(c) Compute the eigenvalues of $\left.H_{0}\right|_{\nu_{e}, \nu_{\mu}}$. Are they the same as the ones in the massive basis? [3 marks]

When neutrinos traverse the Earth, they interact very weakly with the electrons, protons and neutrons contained in the atoms. This effect is included in the Hamiltonian in matter, H_{m}, which, in the flavour basis, is given by:

$$
H_{\mathrm{m}}=\left(\begin{array}{cc}
-\Delta m_{21}^{2} \cos (2 \theta) \frac{c^{4}}{4 p c} & \Delta m_{21}^{2} \sin (2 \theta) \frac{c^{4}}{4 p c} \\
\Delta m_{21}^{2} \sin (2 \theta) \frac{c^{4}}{4 p c} & \Delta m_{21}^{2} \cos (2 \theta) \frac{c^{4}}{4 p c}
\end{array}\right)+\left(\begin{array}{cc}
A & 0 \\
0 & 0
\end{array}\right) .
$$

A, real and >0, depends on the density of electrons. $\Delta m_{21}^{2}=m_{2}^{2}-m_{1}^{2}$.
(d) Find $\tan \left(2 \theta_{m}\right), \theta_{m}$ being the mixing angle which relates the flavour basis to the eigenbase of H_{m}. [2 marks]
[Hint: $\tan \left(2 \theta_{m}\right)=\frac{2 H_{12}^{\mathrm{m}}}{H_{22}^{\mathrm{m}}-H_{11}^{\mathrm{m}}}$, where $H_{i j}^{\mathrm{m}}$ are the elements of H_{m}.]
(e) For small θ in vacuum, discuss how the mixing angle θ_{m} changes depending on A, for $\Delta m_{21}^{2}>0$. In particular, consider the cases of $A \ll \Delta m_{21}^{2} \cos (2 \theta) \frac{c^{4}}{2 p c}, A \gg \Delta m_{21}^{2} \cos (2 \theta) \frac{c^{4}}{2 p c}$ and $A=\Delta m_{21}^{2} \cos (2 \theta) \frac{c^{4}}{2 p c}$. [4 marks]
(f) The probability of ν_{e} oscillating into ν_{μ} at a time t in matter is given by $P\left(\nu_{e} \rightarrow \nu_{\mu}, t\right)=\sin ^{2}\left(2 \theta_{m}\right) \sin ^{2}\left(\left(E_{1}^{m}-E_{2}^{m}\right) t / 2\right) . \quad E_{1}^{m}$ and E_{2}^{m} are the eigenvalues of H_{m}. Considering a sufficiently long time t such that $\sin ^{2}\left(\left(E_{1}^{m}-E_{2}^{m}\right) t / 2\right) \sim 1$, and an experiment in which
$A=0.3 \Delta m_{21}^{2} \cos (2 \theta) \frac{c^{4}}{2 p c}$, is the probability of oscillation enhanced or suppressed for $\Delta m_{21}^{2}>0$, with respect to oscillations in vacuum? Similarly for $\Delta m_{21}^{2}<0$? [4 marks]
[Hint: Express $\sin ^{2}\left(2 \theta_{m}\right)$ as a function of $\tan ^{2}\left(2 \theta_{m}\right)$.]
4. The spin angular operator $\hat{\vec{S}}$ can be written in terms of the Pauli spin operators, $\hat{\vec{\sigma}}$, as: $\hat{\vec{S}}=\frac{\hbar}{2} \hat{\vec{\sigma}}$.
(a) In the eigenbase of \hat{S}_{z}, denoted $|+\rangle=\binom{1}{0}$ and $|-\rangle=\binom{0}{1}$, write the matrix representations of $\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}$ and \hat{S}^{2}. [4 marks]
[Hint: Recall that the Pauli matrices are given by $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, $\sigma_{y}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ and that they are the matrix representation of the Pauli operators in the eigenbase of \hat{S}_{z}.]
Consider a spin- $1 / 2$ particle which is in a state $|\gamma\rangle$:

$$
|\gamma\rangle=a|+\rangle+b|-\rangle,
$$

with $|a|^{2}+|b|^{2}=1$.
(b) Write $|\gamma\rangle$ as a column vector in the matrix representation in the eigenbase of \hat{S}_{z}. Compute the expectation values $\left\langle\hat{S}_{x}\right\rangle,\left\langle\hat{S}_{y}\right\rangle$ and $\left\langle\hat{S}_{z}\right\rangle$ for the state $|\gamma\rangle$. [6 marks]
(c) What will be the respective probabilities that a measurement of \hat{S}_{z} finds $\hbar / 2$ and $-\hbar / 2$ for $|\gamma\rangle$? [2 marks]
(d) What will be the probability that a measurement of \hat{S}_{x} finds $\hbar / 2$ for $|\gamma\rangle$? [4 marks]
[Hint: First find the eigenvalues and eigenvectors of \hat{S}_{x}.]
(e) Show that it is impossible for a spin $1 / 2$ particle to be in a state $|\xi\rangle=c|+\rangle+d|-\rangle$ (normalised, i.e. $|c|^{2}+|d|^{2}=1$) such that

$$
\left\langle\hat{S}_{x}\right\rangle=0, \quad\left\langle\hat{S}_{y}\right\rangle=0, \quad\left\langle\hat{S}_{z}\right\rangle=0 .
$$

[4 marks]

SECTION B. SPECIAL RELATIVITY AND ELECTROMAGNETISM

Answer question 5 and at least one of questions 6, 7 and 8.
5. (a) Muons have a rest mass of $106 \mathrm{MeV} / c^{2}$ and an average lifetime of $2.4 \times 10^{-6} \mathrm{~s}$. If a muon has an energy of 180 MeV , how far on average does it travel before it decays? [4 marks]
(b) Find the matrix $\Lambda^{\mu}{ }_{\nu}$ of a Lorentz transformation that is obtained by first boosting with velocity v along the x-axis and then rotating about the x-axis through an angle α. Does it matter in which order the boost and the rotation are performed? [4 marks]
(c) Give the definition of the dual field-strength tensor $\widetilde{F}^{\mu \nu}$ in terms of the 4 -potential. Use this definition to show $\partial_{\mu} \widetilde{F}^{\mu \nu}=0$. [4 marks]
(d) A certain 4-vector w^{μ} related to a particle of rest mass m and velocity \underline{v} has spatial components $\underline{w}=2 c \gamma(v) \underline{v} / m$. Find w^{0}. [4 marks]
(e) Two protons collide head-on to produce two protons and a pion, $p p \rightarrow$ $p p \pi$. Find the minimal relative velocity of the incoming protons which allows this process to take place. [4 marks]
[Hint: the rest mass of the proton and pion are given by $m_{p}=940 \mathrm{MeV} / c^{2}$ and $m_{\pi}=140 \mathrm{MeV} / c^{2}$ respectively.]
(f) Consider a rod of proper length l_{0}. Show that there is no length contraction if an observer moves perpendicular to the direction of the rod. [4 marks]
(g) Express the 0-component of the Maxwell equation $\partial_{\mu} F^{\mu \nu}=j^{\nu} /\left(c \epsilon_{0}\right)$ in terms of the electric and magnetic fields. [Hint: see question 6 for the definition of $F^{\mu \nu}$.] [4 marks]
(h) The Lagrangian for a free, relativistic particle of rest mass m moving with velocity v is given by $\mathcal{L}=k c / \gamma(v)$. Use the non-relativistic limit to determine k. [4 marks]
6. We consider a point charge q of rest mass m in an electromagnetic field specified by the field-strength tensor

$$
F^{\mu \nu}=\left(\begin{array}{cccc}
0 & -E_{x} & -E_{y} & -E_{z} \\
E_{x} & 0 & -c B_{z} & c B_{y} \\
E_{y} & c B_{z} & 0 & -c B_{x} \\
E_{z} & -c B_{y} & c B_{x} & 0
\end{array}\right) .
$$

The 4 -force f^{μ} acting on the point charge is defined by

$$
f^{\mu} \equiv \frac{d p^{\mu}}{d \tau}
$$

where τ and p^{μ} are the proper time and 4 -momentum of the point charge.
(a) Show that f^{μ} is a 4 -vector and find its relation to the usual force $\underline{F} \equiv$ $d \underline{p} / d t$. [4 marks]
(b) The 4 -force acting on the point charge due to the electromagnetic field is given by

$$
f^{\mu}=\frac{q}{c} F^{\mu \nu} u_{\nu}
$$

where u_{ν} is the 4 -velocity of the point charge. Show that the spatial components of this equation correspond to the Lorentz force law. Derive and interpret the additional equation due to the 0 -component of the above equation. [8 marks]
(c) The point charge is injected into a pure, constant magnetic field \underline{B}. Given that the initial velocity \underline{v} of the point charge is perpendicular to \underline{B} show that the point charge moves with constant speed on a circle. Compute the radius of the circle. What happens if the initial velocity is not perpendicular to \underline{B} ? [8 marks]
7. Let S and $S^{\prime \prime}$ be two inertial frames in standard configuration ($S^{\prime \prime}$ is moving with velocity v along the x-axis and at $t=t^{\prime}=0$ the two frames coincide). The potential ϕ and vector potential \underline{A} are the components of the 4-potential $A^{\mu}=(\phi, c \underline{A})$ and are related to the electric and magnetic fields \underline{E} and \underline{B} by

$$
\underline{E}=-\underline{\nabla} \phi-\frac{\partial \underline{A}}{\partial t} \quad \text { and } \quad \underline{B}=\underline{\nabla} \times \underline{A} .
$$

(a) An observer at rest in S measures a certain value for ϕ and \underline{A} at some point in Minkowski space. Find ϕ^{\prime} and \underline{A}^{\prime}, the potential and vector potential at the same point, as seen by an observer at rest in S^{\prime}. [4 marks]
(b) Given \underline{E} and \underline{B} as seen by an observer at rest in S, use the transformation property of A^{μ} to determine the z-component of the electric field and the x-component of the magnetic field as seen by an observer at rest in S^{\prime}. [8 marks]
(c) An observer at rest in S sees a pure electric field, i.e. $\underline{B}=0$, due to a point charge at rest. Find all inertial frames $S^{\prime \prime}$ where the corresponding electromagnetic field is also a pure electric field. [4 marks]
(d) Show that \underline{E} and \underline{B} are not affected by gauge transformations

$$
\phi \rightarrow \phi-\frac{\partial \psi}{\partial t}, \quad \underline{A} \rightarrow \underline{A}+\underline{\nabla} \psi
$$

where $\psi(t, \underline{x})$ is an arbitrary function. Write the gauge transformations in covariant form. [4 marks]
8. Consider two particles with rest masses m_{1} and m_{2} just prior to a head-on collision in their centre-of-mass frame S. Their energies in S are given by E_{1} and E_{2} respectively and we denote their 4-momenta by $p_{1}^{\mu}=\left(E_{1} / c, \underline{p}_{1}\right)$ and $p_{2}^{\mu}=\left(E_{2} / c, \underline{p}_{2}\right)$. The invariant mass M of the pair is defined through $c^{2} M^{2} \equiv\left(p_{1}+p_{2}\right)^{\overline{2}^{2}}$.
Express the total centre-of-mass energy $E_{1}+E_{2}$ in terms of Lorentz-invariant quantities. [4 marks]
The laboratory frame S_{L} is the rest frame of particle 2. Compute the energy of particle 1 in S_{L} in terms of M, m_{1} and m_{2} and use this result to show that

$$
\underline{p}_{L}^{2}=\frac{c^{2}}{4 m_{2}^{2}}\left[M^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[M^{2}-\left(m_{1}-m_{2}\right)^{2}\right],
$$

where \underline{p}_{L} is the momentum of particle 1 in S_{L}. [6 marks]
Compute the relative velocity of S_{L} and S and express it in terms of E_{2} and \underline{p}_{1}. [5 marks]
At the HERA collider electrons with an energy of $30 \mathrm{GeV}=3 \times 10^{4} \mathrm{MeV}$ collide head on with protons of energy 820 GeV . Given that the rest masses of the electron and proton are $m_{e}=0.5 \mathrm{MeV} / c^{2}$ and $m_{p}=940 \mathrm{MeV} / c^{2}$, compute the invariant mass M of such an electron-proton pair. If the same invariant mass was to be obtained in a fixed-target experiment, i.e. with a proton at rest, to what energy would the electron have to be accelerated? [5 marks]

