The Student Room Group

STEP 2008 Solutions Thread

Scroll to see replies

Reply 40
Daniel Freedman
STEP II 2008, Question 4

Spoiler



For the first part of this... is tanθ=m1m21+m1m2 \tan{\theta} = | \frac{m_1 - m_2}{1+m_1m_2} | a formula that is given? Or should be known? Or is it worked out somehow?
Reply 41
It's in the STEP formula book.
Meeton
For the first part of this... is tanθ=m1m21+m1m2 \tan{\theta} = | \frac{m_1 - m_2}{1+m_1m_2} | a formula that is given? Or should be known? Or is it worked out somehow?


Yeah, it was in the formula book. It can be derived easily though: just draw a diagram and label some angles and use some tan(stuff).
Reply 43
Grande, thanks.
Reply 44

I/5



Thoughts

Reply 45
STEP I question 13

(i)

Spoiler



(ii)

Spoiler



(iii)

Spoiler

Original post by nuodai
...

STEP II - Q10

Solution

(edited 13 years ago)
Reply 47
Original post by nuodai
24 down, 15 to go!


STEP 1 2008 QUESTION 10

For the initial part, notice that as g’ < g, after the particle crosses the boundary where gravity changes, the rate it is decelerating at decreases. Hence, the particle will travel a further distance before it stops in mid-air, and will of course thereafter accelerate downwards.

So, with that in mind, the sketch of the trajectory of the particle when g’ < g will be that it reaches a higher maximum displacement, and therefore a further horizontal displacement. I cannot sketch it here as I don’t know how to!

For the next part, we will consider the time the particle takes to reach the boundary where gravity changes, and then the time it takes to reach its maximum displacement under g’. As its path is symmetrical, the total time taken is simply the sum of these two multiplied by two.

Time taken to travel h, where gravity changes:

Using suvat:

[br][br]s=h[br]u=Vsinα[br]v[br]a=g[br]t=t[br][br][br]s = h[br]u = V\sin\alpha[br]v[br]a = -g[br]t = t[br]

h=Vtsinα – 12gt2h = Vt\sin\alpha \ – \ \frac{1}{2}gt^2

t=VsinαV2sin2α2ghgt = \dfrac{ V\sin\alpha - \sqrt{V^2 \sin^2\alpha - 2gh}}{g}

This is the time the particle takes to reach the boundary.

Now calculating the velocity of the particles as it crosses the boundary:

v=Vsinα – gtv = V\sin\alpha \ – \ gt

v=VsinαVsinα+V2sin2α2ghv = V\sin\alpha - V\sin\alpha + \sqrt{V^2 \sin^2\alpha -2gh}

v=V2sin2α2ghv = \sqrt{V^2 \sin^2\alpha - 2gh}

Now, the particle is under g’ gravity.

Time taken to reach maximum displacement under g’:

Using v = u + at:

[br][br]s[br]u=V2sin2α2gh[br]v=0[br]a=g[br]t=t[br][br][br]s[br]u = \sqrt{V^2 \sin^2\alpha - 2gh}[br]v = 0[br]a = -g’[br]t = t[br]

0=V2sin2α2gh – gt0 = \sqrt{V^2 \sin^2\alpha - 2gh} \ – \ g’t

t=V2sin2α2ghgt = \dfrac{\sqrt{V^2 \sin^2\alpha - 2gh}}{g’}

So the total time is:

[br][br]T=2(VsinαV2sin2α2ghg+V2sin2α2ghg)[br][br][br][br]T = 2 (\dfrac {V\sin\alpha - \sqrt{V^2 \sin^2\alpha - 2gh}}{g} + \dfrac { \sqrt{V^2 \sin^2\alpha - 2gh}}{g’})[br][br]

There is no horizontal acceleration, hence it follows that:

d=2Vcosα (VsinαV2sin2α2ghg+V2sin2α2ghg)d = 2V\cos\alpha \ (\dfrac {V\sin\alpha - \sqrt{V^2 \sin^2\alpha - 2gh}}{g} + \dfrac { \sqrt{V^2 \sin^2\alpha - 2gh}}{g’})

V2sin2α2gh=(sin2α) (V22ghcosec2α)\sqrt{V^2 \sin^2\alpha - 2gh} = (\sqrt{\sin^2\alpha}) \ (\sqrt{V^2 - 2gh\mathrm{cosec}^2\alpha})

V2sin2α2gh=sinα (V22ghcosec2α)\sqrt{V^2 \sin^2\alpha - 2gh} = \sin\alpha \ (\sqrt{V^2 - 2gh\mathrm{cosec}^2\alpha})

Thus: V2sin2α2gh=Vsinα\sqrt{V^2 \sin^2\alpha - 2gh} = V'sin\alpha, where V=V22ghcosec2α V' = \sqrt{V^2 - 2gh\mathrm{cosec}^2\alpha}

Hence, taking sinα\sin\alpha out, we are left with:

d=2Vcosαsinα (VVg+Vg)d = 2V\cos\alpha\sin\alpha \ (\dfrac {V - V’}{g} + \dfrac {V’}{g’})

d=Vsin2α (VVg+Vg) , as required.d = V\sin2\alpha \ (\dfrac {V - V’}{g} + \dfrac {V’}{g’}) \ , \ as \ required.
(edited 13 years ago)
Original post by nuodai
...


STEP I Question 6:

Unparseable latex formula:

f(x) = \dfrac{e^x - 1}{e - 1} \ for \ x \ \geq 0[br] \[br]Let y = f(x)[br]y = \dfrac{e^x - 1}{e - 1} \[br]y(e - 1) = e^x - 1[br]y(e - 1) +1 = e^x[br]x = \ln (y(e - 1) + 1)[br]g(x) = \ln (x(e - 1) + 1)[br] \[br]Drawing the graph...[br] \[br]y = \dfrac{e^x - 1}{e - 1}



This is an exponential through the origin when x = 0, y = 0. And also, as x,y.x \rightarrow \infty , y \rightarrow \infty . We could tell also by the fact that it is basically a constant multiplied by (ex1)(e^x - 1) and obviously has an increasing gradient. We should also notice that when x = 1, g(1) = f(1) = 1. Therefore, they intersect at (1,1) and g(x) is f(x) reflected on y = x.

Unparseable latex formula:

\int^{\frac{1}{2}}_0 f(x) \ dx[br]= \int^{\frac{1}{2}}_0 \dfrac{e^x - 1}{e - 1} \ dx[br]= \dfrac{1}{e - 1} \int^{\frac{1}{2}}_0e^x - 1 \ dx[br]= \dfrac{1}{e - 1} \left[ e^x - x\right]^{\frac{1}{2}}_0[br]= \dfrac{1}{e - 1} \left[ \sqrt e - \frac{3}{2} \right] = \dfrac{2 \sqrt e - 3}{2(e - 1)}[br]\[br]\int^k_0 g(x) \ dx = \int^k_0 \ln (x(e - 1) + 1) \ dx [br]Let \ u = x(e - 1) + 1 = ex - x + 1[br]\dfrac{du}{dx} = e - 1[br]\dfrac{1}{e - 1} du = dx


x=k (k=1e+1)[br]u=e1e+1+1[br]u=e1+e+1e+1=e+ee+1[br]u=e(1+e)1+e)=e[br]x=0,u=1[br]1e1e1lnu du[br]lnx dx=xlnxx+c[br]1e1[ulnuu]1e=1e1[elnee+1][br]1e1[e2e+1]=e2e+22(e1)[br]=2e2(e1)[br]x = k \ (k = \dfrac{1}{\sqrt e + 1} ) [br]u = \dfrac{e - 1}{\sqrt e + 1} + 1[br]u = \dfrac{e - 1 + \sqrt e + 1}{\sqrt e + 1} = \dfrac{\sqrt e + e}{\sqrt e + 1}[br]u = \dfrac{\sqrt e (1 + \sqrt e)}{1 + \sqrt e)} = \sqrt e[br]x = 0, u = 1[br]\int^{\sqrt e}_1 \dfrac{1}{e - 1} \ln u \ du[br]\int \ln x \ dx = x \ln x - x + c[br]\dfrac{1}{e - 1} \left[ u \ln u - u \right]^{\sqrt e}_1 = \dfrac{1}{e - 1} \left[ \sqrt e \ln \sqrt e - \sqrt e + 1 \right][br]\dfrac{1}{e - 1} \left[ \dfrac{\sqrt e}{2} - \sqrt e + 1 \right] = \dfrac{\sqrt e - 2\sqrt e + 2}{2(e - 1)}[br]= \dfrac{2 - \sqrt e}{2(e - 1)}[br]
012f(x) dx+0kg(x) dx=2e32(e1)+2e2(e1)[br]=e12(e1)=12(e1e1)[br]\int^{\frac{1}{2}}_{0} f(x) \ dx + \int^{k}_{0} g(x) \ dx = \dfrac{2 \sqrt e - 3}{2(e - 1)} + \dfrac{2 - \sqrt e}{2(e - 1)}[br]= \dfrac{\sqrt e - 1}{2(e - 1)} = \dfrac{1}{2} (\dfrac {\sqrt e - 1}{e - 1})[br]

Using the difference of two squares on the denominator:

=12e1(e1)(e+1)[br]=12(e+1)[br]= \dfrac{1}{2} \dfrac {\sqrt e - 1}{(\sqrt e - 1)(\sqrt e + 1)}[br]= \dfrac{1}{2 (\sqrt e + 1)}[br]

As given.

Finally, we should notice the relation that f(12)=k and g(k)=12f(\frac{1}{2}) = k \ and \ g(k) = \frac{1}{2} . Therefore, because g(x) is the inverse of f(x), we can reflect the area given by the definite integral of f(x) on the y = x line and the area would form a rectangle with the definite integral of g(x) going k along the x axis and a half along the x axis.

The area is therefore k2\frac{k}{2} which is also the result we arrived at.

(I'll make a graph if necessary.)
(edited 12 years ago)
Reply 49
nuodai
...


STEP I Q7

Spoiler

Original post by Oh I Really Don't Care
STEP I, question 1

Introduction

If a number , x, is rational it can be expressed as the ratio of two integers p and q. That is; x=pq  p,qZ  q0 x = \frac{p}{q} \; p,q \in \mathbb{Z} \; q \ne 0. If a number x is irrational it cannot be epressed as the ratio of two integers.

A For the sake of contradiction we assume that pq is irrational but p and q are rational. That is, p=ac  andq=bd  so  pq=abcd p = \frac{a}{c} \; and q = \frac{b}{d} \; so \; pq = \frac{ab}{cd} the integers are closed under multiplcation so it follows that ab/cd is the ratio of two integers: a contradiction.

B As above; p+q=ad+bcdc p + q = \frac{ad + bc}{dc} and we note the integers are closed under addition and the contradiction establishes the result.

C π+(1π)=1 \pi + \left(1 - \pi\right) = 1

Labelling;

pi + e = M

pi - e = N

pi^2 - e^2 = O

pi^2 + e^2 = P

Adding M and N we realise by A and B that oone of M and N is irrational. We do the same and realise that one of O and P is irrational.

We note:

M = O/N and that N = O/M

assuming that O and N and O and M are both rational leads to a contradiction of the established results about the irrationality of either N or M so we realise that P and one of M,N may be rational

Spoiler

(edited 11 years ago)
Reply 51
Can I offer a nicely written up proof for the last part of I Q1?
Original post by nuodai
STEP I Question 3

Introduction

Part (i)



Part (ii) coming when I can be bothered with tedium.


Could you finish part (i) and part (ii) please?
Original post by nuodai
x

Solution for I, Q9

Position of P



Velocity of P



Total kinetic energy

(edited 11 years ago)
II/12:

part i)

Spoiler



part ii)

Spoiler

2008 STEP I question 11
If friction is limiting then the total reactions at P1 and P2 are at an angle λP_1\mathrm{\ and\ }P_2 \mathrm{\ are\ at\ an\ angle\ }\lambda to the normals and meet at C, directly above the mid-point of the rod.
Unparseable latex formula:

\angleP_1OP_2=90^{\circ},\mathrm{\ so\ } \angleP_1CP_2=90^{\circ}\mathrm{\ and\ }P_1OCP_2 \mathrm{\ is\ cyclic\ }


G is the mid-point of the rod and is obviously the centre of the circle P1OCP2P_1OCP_2
Unparseable latex formula:

\mathrm{if\ }ON\mathrm{\ is\ vertical\ then\ we\ have}\angleCGO=2\lambda

(angle at centre theorem)
Unparseable latex formula:

\angleGON=2\lambda \mathrm{\ alternate\ angles\ }\angleNOP_1=\alpha \mathrm{\ alternate\ angles\ and\ }\angleGOP_1=\frac{\pi}{4}


so 2λ+α=π4α=π42λ\mathrm{so\ }2\lambda+\alpha=\frac{\pi}{4} \Rightarrow \alpha=\frac{\pi}{4}-2\lambda
hence tanα=tanπ4tan2λ1+tanπ4tan2λ=12μ1μ21+2μ1+μ2 since tanλ=μ\mathrm{hence\ }\tan\alpha=\frac{\tan\frac{\pi}{4}-\tan2\lambda}{1+\tan\frac{\pi}{4}\tan2\lambda}=\frac{1-\frac{2\mu}{1-\mu^2}}{1+\frac{2\mu}{1+\mu^2}} \mathrm{\ since\ }\tan\lambda=\mu
i.e. tanα=1μ22μ1μ2+2μ as required\mathrm{i.e.\ }\tan\alpha=\frac{1-\mu^2-2\mu}{1-\mu^2+2\mu} \mathrm{\ as\ required}
Unparseable latex formula:

\mathrm{if\ }\theta\mathrm{\ is\ the\ angle\ of\ the\ rod\ to \ the\ horizontal\ then\ }\angleCGO=\theta\mathrm{\ hence\ }\theta=2\lambda


Unparseable latex formula:

2\lambda+\alpha=\frac{\pi}{4} \Rightarrow 0<\lambda<22\frac{1}{2}^\circ}

2008 STEP II Question 11.
By conservation of momentum horizontally
Unparseable latex formula:

-kmc+m(-v+u\cos\theta)=0\mathrm{\ and\ }u=at\mathrm_\ so}


v(k+1)=atcosθdvdt=acosθk+1 as requiredv(k+1)=at\cos\theta\Rightarrow\frac{dv}{dt}=\frac{a\cos\theta}{k+1}\mathrm{\ as\ required}
If P appears to descend along a line at 45 to the horizontal then\mathrm{If\ P\ appears\ to\ descend\ along\ a\ line\ at\ }45^\circ \mathrm{\ to\ the\ horizontal\ then}
Unparseable latex formula:

at\cos\theta-v=at\sin\theta \Rightarrowv=at(\cos\theta-\sin\theta)


dvdt=a(cosθsinθ)acosθk+1=a(cosθsinθ) \Rightarrow \frac{dv}{dt}=a(\cos\theta-\sin\theta) \Rightarrow\frac{a\cos\theta}{k+1}=a(\cos\theta-\sin\theta)
cosθ=(k+1)(cosθsinθ) \Rightarrow \cos\theta=(k+1)(\cos\theta-\sin\theta)
Unparseable latex formula:

\Rightarrow \sin\theta= \frac{k\cos\theta}{k+1} \RIghtarrow\tan\theta= \frac{k}{k+1} \mathrm{\ as\ required}


k=3tanθ=34, so sinθ=35 and cosθ=45 so dvdt=a5k=3 \Rightarrow \tan\theta=\frac{3}{4}, \mathrm{\ so\ }\sin\theta=\frac{3}{5} \mathrm{\ and\ }\cos\theta=\frac{4}{5}\mathrm{\ so\ }\frac{dv}{dt}=\frac{a}{5}
Unparseable latex formula:

\mathrm{Resolving\ along\ the\ slope\ }mg\sintheta-\muN=m\left(-\frac{dv}{dt}\cos\theta+a\Right) \Rightarrow3mg-5\muN=5m\left(-\frac{4a}{25}+a\right)


Unparseable latex formula:

\mathrm{Resolving\ perpendicular\ to\ slope\ }mg\cosTheta-N=m\frac{dv}{dt}\sin\theta \Rightarrow4mg-5N=\frac{3am}{5}


N=20mg3am25 \Rightarrow N=\frac{20mg-3am}{25}
so 3mg(20mg3am)μ5=21am515g20gμ+3aμ=21aa=(20μ15)g(3μ21)\mathrm{so\ }3mg-\frac{(20mg-3am)\mu}{5}=\frac{21am}{5} \Rightarrow 15g-20g\mu+3a\mu=21a \Rightarrow a=\frac{(20\mu-15)g}{(3\mu-21)}
If P is released with tanθμ\tan\theta\le\mu then total contact force on particle will be to the left of vertical (see diagram) so wedge will slide to the left but the particle will not move relative to the wedge.
2008 STEP III Question 11.
If the resisting couple (G) is constant then using G=Iα G=I\alpha for the second phase of the motion we have
G=ITω0 G=\frac{I}{T}\omega_0 and rotational K.E. Used doing work against the couple is 12Iω02=2πn2G\frac{1}{2}I\omega_0^2=2\pi n_2G
Hence, 12Iω02=2πn2×Iω0T12Iω0T=2πn2 as required\frac{1}{2}I\omega_0^2=2\pi n_2\times \frac{I\omega_0}{T} \Rightarrow \frac{1}{2}I\omega_0T=2\pi n_2 \mathrm{\ as\ required}
If the particle descends a distance h in the first part of the motion then
h=2πrn1h=2\pi rn_1 and its speed will be v=rω0v=r\omega_0 so by the work-energy principle
mgh2πn1G=12Iω02+12mv2mgh-2\pi n_1G=\frac{1}{2}I\omega_0^2+ \frac{1}{2} mv^2
now h=2πrn1,G=Iω024πn2,ω02=16π2n22T2 and v2=r2ω02\mathrm{now\ }h=2\pi rn_1,G=\frac{I\omega_0^2}{4\pi n_2},\omega_0^2=\frac{16\pi^2n_2^2}{T^2} \mathrm{\ and\ }v^2=r^2\omega_0^2
so 2πmgrn1πn1I2πn2×16π2n22T2=8Iπ2n22T2+8mr2π2n22T2\mathrm{so\ }2\pi mgrn_1-\frac{\pi n_1I}{2\pi n_2}\times\frac{16\pi^2n_2^2}{T^2}= \frac{8I\pi^2n_2^2}{T^2}+ \frac{8mr^2\pi^2n_2^2}{T^2}
πmgrn1T24πn1Iπn2=4Iπ2n22+4mr2π2n22\Rightarrow \pi mgrn_1T^2-4\pi n_1I\pi n_2=4I\pi^2n_2^2+4mr^2\pi^2n_2^2
I(4π2n1n2+4π2n22)=πmgrn1T24mr2π2n22\Rightarrow I\left(4\pi^2n_1n_2+4\pi^2n_2^2 \right)=\pi mgrn_1T^2-4mr^2\pi^2n_2^2
I=mgrn1T24mr2πn4πn2(n1+n2) as required\Rightarrow I=\frac{mgrn_1T^2-4mr^2\pi n}{4\pi n_2(n_1+n_2)}\mathrm{\ as\ required}
(edited 10 years ago)
2008 STEP III Question 13
P(1 ring created at first step) =12n1 and P(no ring created) =2n22n1 \mathrm{P(1\ ring\ created\ at\ first\ step)\ }=\frac{1}{2n-1} \mathrm{\ and\ P(no\ ring\ created)\ }=\frac{2n-2}{2n-1}
so E(number of rings created at first step) n=0×2n22n1+1×12n1=12n1\mathrm{so\ E(number\ of\ rings\ created\ at\ first\ step)\ n}=0\times\frac{2n-2}{2n-1}+1\times\frac{1}{2n-1}=\frac{1}{2n-1}
Immediately after the first step there will be 2n-2 free ends left regardless of the outcome of the first step so E(number of rings created at second step)=12n3=\frac{1}{2n-3}
And in general, E(number created at r-th step) =12n(2r1)=\frac{1}{2n-(2r-1)}
So, E(number of rings at end of process)=12n1+12n3+12n5+...+11 or r=1n12n+12r=\frac{1}{2n-1}+\frac{1}{2n-3}+\frac{1}{2n-5}+...+\frac{1}{1} \mathrm{\ or\ }\displaystyle\sum_{r=1}^n \frac{1}{2n+1-2r}
Var(number of rings at first step)=12n1(12n1)2=2(n1)(2n1)2=\frac{1}{2n-1}-\left(\frac{1}{2n-1}\right)^2=\frac{2(n-1)}{(2n-1)^2}
Var(number of rings at second step)
Unparseable latex formula:

=\frac{1}{2n-3}-\left(\frac{1}{2n-3}\righ)^2=\frac{2(n-2)}{(2n-3)^2} \mathrm{\ etc.}


So since number of rings created at each step are independent.
Var(number at end of process)=2(n1)(2n1)2+2(n2)(2n3)2+2(n3)(2n5)2+...+232= \frac{2(n-1)}{(2n-1)^2}+\frac{2(n-2)}{(2n-3)^2}+\frac{2(n-3)}{(2n-5)^2}+...+\frac{2}{3^2}
For n=40000,\mathrm{For\ }n=40000, E(number of rings created)=1+13+15+...+179999=1+\frac{1}{3}+\frac{1}{5}+...+ \frac{1}{79999}
=1+12+13+14+...+180000(12+13+15...+180000)=1+\frac{1}{2}+ \frac{1}{3}+ \frac{1}{4}+...+ \frac{1}{80000}-\left(\frac{1}{2}+ \frac{1}{3}+ \frac{1}{5}...+ \frac{1}{80000}\right)
=ln8000012ln40000=ln(80000200)=2ln206=\ln80000- \frac{1}{2}\ln40000=\ln\left( \frac{80000}{200}\right)=2\ln20 \approx 6
2008 STEP II Question 13
(i) Black counter ends in P if either it does not move at all or it moves from P to Q and then back from Q to P\mathrm {(i)\ Black\ counter\ ends\ in\ P\ if\ either\ it\ does\ not\ move\ at\ all\ or\ it\ moves\ from\ P\ to\ Q\ and\ then\ back\ from\ Q\ to\ P}
P(Black ball does not move from P) =(n1k1)(nk)=(n1)!k!(nk)!(k1)!(nk)!n!=nkn\mathrm{P(Black\ ball\ does\ not\ move\ from\ P)\ }=\frac{\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{(n-1)!k!(n-k)!}{(k-1)!(n-k)!n!}=\frac{n-k}{n}
P(black ball goes from P to Q)=(n1k1)(nk)=(n1)!k!(nk)!(k1)!(k)(nk)!n!=kn\mathrm{P(black\ ball\ goes\ from\ P\ to\ Q)}=\frac{\binom{n-1}{k-1}}{\binom{n}{k}}=\frac{(n-1)!k!(n-k)!}{(k-1)!(-k)(n-k)!n!}=\frac{k}{n}
]P(black ball goes from Q to P)=(n+k1k1)(n+1k)=(n+k1)!k!n!(k1)!n!(n+k)!=kn+k]\mathrm{P(black\ ball\ goes\ from\ Q\ to\ P)}=\frac{\binom{n+k-1}{k-1}}{\binom{n+1}{k}}=\frac{(n+k-1)!k!n!}{(k-1)!n!(n+k)!}=\frac{k}{n+k}
so P(black ball ends in P)=nkn×kn×kn+k=n2n(n+k)=nn+k\mathrm{so\ P(black\ ball\ ends\ in\ P)}=\frac{n-k}{n}\times \frac{k}{n} \times \frac{k}{n+k}= \frac{n^2}{n(n+k)}= \frac{n}{n+k}
The probability is obviously maximised when k=0 since it is then =1\mathrm{The\ probability\ is\ obviously\ maximised\ when\ }k=0 \mathrm{\ since\ it\ is\ then\ }=1
ii) The two black balls can end up in same bag in three ways:\mathrm{ii)\ The\ two\ black\ balls\ can\ end\ up\ in\ same\ bag\ in\ three\ ways:}
(a) Black ball not moved from P but then moved from Q\mathrm{(a)\ Black\ ball\ not\ moved\ from\ P\ but\ then\ moved\ from\ Q}
(b) Black ball moved from P but not from Q\mathrm{(b)\ Black\ ball\ moved\ from\ P\ but\ not\ from\ Q}
(c) Black ball moved from P then both moved from Q\mathrm{(c)\ Black\ ball\ moved\ from\ P\ then\ both\ moved\ from\ Q}]
P of (a) =(n1k)(nk)×(n+k1k1)(n+kk)=(n1)!k!(nk)!k!(n1k)!n!×(n+k1)!k!n!(k1)!n!(n+k)!=nkn×kn+k=k(nk)n(n+k)\mathrm{P\ of\ (a)\ }=\frac{\binom{n-1}{k}}{\binom{n}{k}}\times\frac{\binom{n+k-1}{k-1}}{\binom{n+k}{k}}=\frac{(n-1)!k!(n-k)!}{k!(n-1-k)!n!}\times\frac{(n+k-1)!k!n!}{(k-1)!n!(n+k)!}=\frac{n-k}{n}\times\frac{k}{n+k}= \frac{k(n-k)}{n(n+k)}
P of (b) =(n1k1)(nk)×(n+k2k2)(n+kk)=(n1)!k!(nk)!(k1)!(nk)!n!×(n+k2)!k!n!(k2)!n!(n+k)!=kn×k(k1)n(n+k)=k2(k1)n(n+k)(n+k1)\mathrm{P\ of\ (b)\ }=\frac{\binom{n-1}{k-1}}{\binom{n}{k}}\times\frac{ \binom{n+k-2}{k-2}}{ \binom{n+k}{k}}=\frac{(n-1)!k!(n-k)!}{(k-1)!(n-k)!n!}\times\frac{(n+k-2)!k!n!}{(k-2)!n!(n+k)!}=\frac{k}{n}\times \frac{k(k-1)}{n(n+k)}= \frac{k^2(k-1)}{n(n+k)(n+k-1)}
P of (c) =(n1k1)(nk)×(n+k2k2)(n+kk)=(n1)!k!(nk)!(k1)!(nk)!n!×(n+k2)!k!n!k!(n2)!(n+k)!=kn×n(n1)(n+k)(n+k1)=k(n1)(n+k)(n+k1)\mathrm{P\ of\ (c)\ }=\frac{\binom{n-1}{k-1}}{\binom{n}{k}}\times\frac{ \binom{n+k-2}{k-2}}{ \binom{n+k}{k}}=\frac{(n-1)!k!(n-k)!}{(k-1)!(n-k)!n!}\times\frac{(n+k-2)!k!n!}{k!(n-2)!(n+k)!}=\frac{k}{n}\times \frac{n(n-1)}{(n+k)(n+k-1)}= \frac{k(n-1)}{(n+k)(n+k-1)}
so probability that both black balls end up in same bag =k(nk)n(n+k)+k2(k1)n(n+k)(n+k1)+k(n1)(n+k)(n+k1)\mathrm{so\ probability\ that\ both\ black\ balls\ end\ up\ in\ same\ bag\ } = \frac{k(n-k)}{n(n+k)}+\frac{k^2(k-1)}{n(n+k)(n+k-1)}+\frac{k(n-1)}{(n+k)(n+k-1)}
=k(nk)(n+k1)+k2(k1)+kn(n1)n(n+k)(n+k1)=k(n2k2n+k+k2k+n2n)n(n+k)(n+k1)=\frac{k(n-k)(n+k-1)+k^2(k-1)+kn(n-1)}{n(n+k)(n+k-1)}=\frac{k(n^2-k^2-n+k+k^2-k+n^2-n)}{n(n+k)(n+k-1)}
=k(2n22n)n(n+k)(n+k1)=2k(n1)(n+k)(n+k1)=\frac{k(2n^2-2n)}{n(n+k)(n+k-1)}=\frac{2k(n-1)}{(n+k)(n+k-1)}
Let f(k)=k(n+k)(n+k1) then f(k)=(n+k)(n+k1)k(n+k+n+k1)(n+k)2(n+k1)2=n2k2n(n+k)2(bn+k1)2=0 if k2=n2nk=n2n\mathrm{Let\ f}(k)=\frac{k}{(n+k)(n+k-1)}\mathrm{\ then\ f}'(k)=\frac{(n+k)(n+k-1)-k(n+k+n+k-1)}{(n+k)^2(n+k-1)^2}=\frac{n^2-k^2-n}{(n+k)^2(bn+k-1)^2}=0\mathrm{\ if\ }k^2=n^2-n \Rightarrow k=\sqrt{n^2-n}
Only the positive root considered since k>0\mathrm{Only\ the\ positive\ root\ considered\ since\ }k>0
Probability is a minimum when k=0 since it is then zero so k=n2n gives maximum probability \mathrm{Probability\ is\ a\ minimum\ when\ }k=0 \mathrm{\ since\ it\ is\ then\ zero\ so\ }k=\sqrt{n^2-n} \mathrm{\ gives\ maximum\ probability\ }
But n2n is not a perfect square so we consider the integers on either side of n2n\mathrm{But\ }n^2-n \mathrm{\ is\ not\ a\ perfect\ square\ so\ we\ consider\ the\ integers\ on\ either\ side\ of\ }\sqrt{n^2-n} k=np=2n(n1)2n(2n1)=n12n1 and k=n1p=2(n1)2(2n1)(2n2)=n12n1 so k=n or n1k=n \Rightarrow p=\frac{2n(n-1)}{2n(2n-1)}=\frac{n-1}{2n-1} \mathrm{\ and\ }k=n-1 \Rightarrow p=\frac{2(n-1)^2}{(2n-1)(2n-2)}=\frac{n-1}{2n-1} \mathrm{\ so\ }k=n \mathrm{\ or\ }n-1

Quick Reply

Latest

Trending

Trending