The Student Room Group

STEP I, II, III 2002 Solutions

Scroll to see replies

2002 STEP question 13

Unparseable latex formula:

\text{G}(y)=\dfrac{\text{F}(y)}{2-\text{F}(y)} \text{ so G}(a)=\dfrac{\text{F}(a)}{2-\text{F}(a)}=\dfrac{0}{2}=0 \text{ and G}(b)=\dfrac{\text{F}(b)}{}2-\text{F}(b)}=\dfrac{1}{1}=1


G(y)=(2F(y))F(y)F(y)(F(y))(2F(y))2=2F(y)(2F(y))2>0 \text{G}'(y)= \dfrac{(2-\text{F}(y))\text{F}'(y)-\text{F}(y)(-\text{F}'(y))}{(2-\text{F}(y))^2}= \dfrac{2F'(y)}{(2-\text{F}(y))^2}>0
0F(y)11(2F(y))24122(2F(y))220\leq \text{F}(y) \leq1 \Rightarrow 1\leq(2-\text{F}(y))^2 \leq4 \Rightarrow\dfrac{1}{2} \leq \dfrac{2}{(2-\text{F}(y))^2 }\leq2
E(Y)=01yG(y)dy=012yF(y)(2F(y))2dy0112yF(y)dyE(y)012yF(y)dy from previous result \text{E}(Y)=\displaystyle \int_0^1 y\text{G}'(y) dy=\displaystyle \int_0^1 \dfrac{2y\text{F}'(y)}{(2-\text{F}(y))^2}dy \Rightarrow \displaystyle \int_0^1 \dfrac{1}{2}y\text{F}'(y)dy \leq \text{E}(y) \leq \displaystyle \int_0^1 2y\text{F}'(y)dy \text{ from previous result}
Unparseable latex formula:

\text{This may also be written as }\displaystyle \int \dfrac{1}{2}x\terxt{F}'(x)dx \leq\text{E}(Y) \leq \dfisplaystyle \int_0^1 2x\text{F}'(x)dx \text{ i.e. }\dfrac{1}{2} \text{E}(X) \leq\text{E}(Y) \leq 2\text{E}(X)


E(Y2)=01y2G(y)dy=012y2F(y)(2F(y))2012y2F(y)dy=201x2F(x)dx=2E(X2) \text{E}(Y^2)= \displaystyle \int_0^1y^2\text{G}'(y)dy= \displaystyle \int_0^1 \dfrac{2y^2\text{F}'(y)}{(2-\text{F}(y))^2} \leq \displaystyle \int_0^1 2y^2\text{F}'(y)dy=2 \displaystyle \int_0^1 x^2 \text{F}'(x)dx=2 \text{E}(X^2)
i.e. E(Y2)=2Var(X)+2[E(X)]2 \text{i.e. E}(Y^2)=2\text{Var}(X)+2[\text{E}(X)]^2
hence, Var(Y)=2Var(X)+2[E(X)]2[E(Y)]2 but [E(Y)]214[E(X)]2 by earlier result \text{hence, Var}(Y)=2\text{Var}(X)+2[\text{E}(X)]^2-[\text{E}(Y)]^2 \text { but [E}(Y)]^2 \geq \dfrac{1}{4}[\text{E}(X)]^2 \text{ by earlier result}
so Var(Y)2Var(X)+2[E(X)]214[E(X)]2=2Var(X)+74[E(X)]2 as required \text{so Var}(Y) \leq 2\text{Var}(X)+2[\text{E}(X)]^2- \dfrac{1}{4}[\text{E}(X)]^2=2 \text{Var}(X)+ \dfrac{7}{4}[\text{E}(X)]^2 \text{ as required}
(edited 9 years ago)
2002 STEP II question 14

Area of region Rn is π[n2(n1)2]=π(2n1) \text{Area of region }R_n \text{ is } \pi \left[n^2-(n-1)^2 \right]= \pi(2n-1)
Probability that observer selects region Rn is kπ(2n1) where kπN2=1k=1πN2\text{Probability that observer selects region }R_n \text{ is } k\pi(2n-1) \text{ where } k\pi N^2=1 \Rightarrow k=\dfrac{1}{\pi N^2}
so probability that he selects Rn is 2nN2 \text{so probability that he selects }R_n \text{ is } \dfrac{2n}{N^2}

overall average number of accidents is thus n=1N(2n1N2)(2nN)=n=1N(2n1N2)(2NnN) \text{overall average number of accidents is thus }\displaystyle \sum_{n=1}^N \left( \dfrac{2n-1}{N^2} \right) \left( 2- \dfrac {n}{N} \right)= \displaystyle \sum_{n=1}^N \left( \dfrac {2n-1}{N^2} \right) \left( \dfrac{2N-n}{N} \right)
=1N3n=1N(4nN2N2n2+n)=4N2n=1Nn2N2N32N3n=1Nn2+1N3n=1Nn= \dfrac{1}{N^3} \displaystyle \sum_{n=1}^N (4nN-2N-2n^2+n)=\dfrac{4}{N^2} \displaystyle \sum_{n=1}^Nn-\dfrac{2N^2}{N^3}-\dfrac{2}{N^3} \displaystyle \sum_{n=1}^Nn^2+\dfrac{1}{N^3} \displaystyle \sum_{n=1}^Nn
=4N2N(N+1)22N2N3N(N+1)(2N+1)6+1N3N(N+1)2=2(N+1)N2N(N+1)(2N+1)3N2+N+12N2= \dfrac{4}{N^2} \dfrac{N(N+1)}{2}- \dfrac{2}{N}- \dfrac{2}{N^3} \dfrac{N(N+1)(2N+1)}{6}+ \dfrac{1}{N^3} \dfrac{N(N+1)}{2}= \dfrac{2(N+1)}{N} - \dfrac{2}{N} - \dfrac{(N+1)(2N+1)}{3N^2}+ \dfrac{N+1}{2N^2}
=2(N+1)(2N+1)3N2+N+12N2=24N2+3N16N2=2(N+1)(4N1)6N2=216(1+1N)(41N)=2- \dfrac{(N+1)(2N+1)}{3N^2}+ \dfrac{N+1}{2N^2}=2- \dfrac{4N^2+3N-1}{6N^2}=2- \dfrac{(N+1)(4N-1)}{6N^2}=2-\dfrac{1}{6} \left(1+\dfrac{1}{N} \right) \left(4-\dfrac{1}{N} \right)
Pr(X=k)=n=1N2n1N2×e2+n/N(2n/N)kk!=e2Nk2k!n=1N(2n1)(1Nn)ken/N Pr (X=k)= \displaystyle \sum_{n=1}^N \dfrac{2n-1}{N^2} \times \dfrac{ \text{e}^{-2+n/N}(2-n/N)^k}{k!}= \dfrac{ \text{e}^{-2}N^{-k-2}}{k!} \displaystyle \sum_{n=1}^N(2n-1)(1N-n)^k \text{e}^{n/N}
Unparseable latex formula:

\text{with }N=3, Pr(X=2)= \dfrac{\text{e}^{-2}}{2.3^4} \displaystyle \sum_{n=1}^3(2n-1)(6-n)^2\text{e}^{n/3}= \dfrac{1}{162\text{e}^2}\left[25\text{e}^{1/3}+48\text{e}^{2/3}+45\text{e} \right]}


Pr(R2 selected and X=2)=3N2×e4/3(4/3)22!c hence Pr(R_2 \text{ selected and }X=2)= \dfrac{3}{N^2} \times \dfrac{\text{e}^{-4/3} (4/3)^2}{2!} c \text{ hence}
Pr(R2 selected X=2)=13×1618e4/31162e2[25e1/3+48e2/3+45e]=4848+45e1/3+25e1/3 Pr(R_2 \text{ selected }|X=2)= \dfrac{\frac{1}{3} \times \frac{16}{18}\text{e}^{-4/3}}{\frac{1}{162\text{e}^2}[25\text{e}^{1/3}+48\text{e}^{2/3}+45\text{e}]}= \dfrac{48}{48+45 \text{e}^{1/3}+25 \text{e}^{-1/3}}
2002 STEP III question 9

The problem is equivalent to finding the centre of mass of the solid on the righrt of the diagram \text{The problem is equivalent to finding the centre of mass of the solid on the righrt of the diagram}
Unparseable latex formula:

\text{with respect to axes OA and OB where the volume is }k^3 \text{, i.e. }a^2b+ \dfrac{1}{2}a^3 \tan \tehta= ka^3 \Rightarrow b= \dfrac{a(2k-\tan \theta)}{2}


providing 2k>tanθ i.e. k>12tanθ \text{providing }2k> \tan \theta \text{ i.e. }k> \dfrac{1}{2} \tan \theta
splitting into a rectangular block and a triangular prism we have distance of c of m from OA given by \text{splitting into a rectangular block and a triangular prism we have distance of c of m from OA given by }
Unparseable latex formula:

ka^3 \bar{x}=a^2b \times \dfrac{a}{2}+\ \dfrac{1}{2}a^3 \tan \thewta \times \left(b+\dfrac{a \tan \theta}{3} \right)= \dfrac{1}{2}a^3b+ \dfrac{1}{6}a^4 \tan \theta= \dfrac{1}{4}a^4(2k- \tan \theta)+ \dfrac{1}{6}a^4 \tan \theta


xˉa=12tanθ12k and similarly distance from OB is given by \Rightarrow \dfrac{\bar{x}}{a}=\dfrac{1}{2}- \dfrac{ \tan \theta}{12k}\text{ and similarly distance from OB is given by}
ka3yˉ=a2b×12b+12a3tanθ×(b+atanθ3)=12a2b2+12a3btanθ+a4tan2θ6 ka^3 \bar{y}=a^2b \times \dfrac{1}{2}b+ \dfrac{1}{2}a^3 \tan \theta \times \left(b+ \dfrac{a \tan \theta}{3} \right)= \dfrac{1}{2}a^2b^2+ \dfrac{1}{2}a^3b \tan \theta+ \dfrac{a^4 \tan^2 \theta}{6}
Unparseable latex formula:

\text { so } \drac{\bar{y}}{a}= \dfrac{k}{2}+ \dfrac{\tan \theta}{24k} \text{ as required}


If k<12tanθ then the volume of fluid is a triangular prism, (see second diagram) \text{If }k< \dfrac{1}{2} \tan \theta \text{ then the volume of fluid is a triangular prism, (see second diagram)}
Let base now be a rectangle a×b then 12ab2tanθ=ka3 i.e. b2=2ka2tanθ \text{Let base now be a rectangle }a \times b \text{ then } \dfrac{1}{2}ab^2 \tan \theta=ka^3 \text{ i.e. }b^2= \dfrac{2ka^2}{\tan \theta}
We now have xˉa=b3a=2k3tanθ and yˉa=btanθ3a=2ktanθ3 \text{We now have } \dfrac{ \bar{x}}{a}= \dfrac{b}{3a}= \dfrac{\sqrt{2k}}{3\sqrt{ \tan \theta}} \text{ and } \dfrac{ \bar{y}}{a}= \dfrac{b \tan \theta}{3}a= \dfrac{\sqrt{2k\tan\theta}}{3}
In this latter case container will topple if xˉy<tanθtanθ>2k3tanθ×32ktanθ=1tanθ\text{In this latter case container will topple if } \dfrac{ \bar{x}}{y}< \tan \theta \Rightarrow \tan \theta > \dfrac{ \sqrt{2k}}{3 \sqrt{ \tan \theta}}\times \dfrac{3}{ \sqrt{2k\tan \theta}}= \dfrac{1}{ \tan \theta}
i.e. if tan2θ<1θ>45\text{i.e. if }\tan^2 \theta<1 \Rightarrow \theta>45 ^\circ
2002 STERP III question 10

By conservation of energy, if angular velocity is θ˙ and the second particle \text{By conservation of energy, if angular velocity is } \dot{\theta} \text{ and the second particle}
does not slip then we have, loss of PE =mgasinθmga(1cosθ) \text{does not slip then we have, loss of PE }=mga\sin \theta-mga(1- \cos \theta)
Gain of KE is ma2θ˙2 hence aθ˙2=g(sinθ+cosθ1)θ˙2=ga(sinθ+cosθ1) \text{Gain of KE is }ma^2 \dot{\theta}^2 \text{ hence } a \dot{\theta}^2=g(\sin \theta+ \cos \theta-1) \Rightarrow \dot{\theta}^2= \dfrac{g}{a}(\sin \theta+\cos \theta-1)
Differentiating w.r.t. time we have 2θ˙θ¨=ga(cosθsinθ)θ˙ i.e. θ¨=g2a(cosθsinθ)\text{Differentiating w.r.t. time we have }2 \dot{\theta} \ddot{\theta}=\dfrac{g}{a}( \cos \theta- \sin \theta) \dot{\theta} \text{ i.e. } \ddot{\theta}= \dfrac{g}{2a} (\cos \theta- \sin \theta)
Unparseable latex formula:

\text{For second particle not to slip we must have }F-mg \sin \theta=ma \ddot{\theta}= \dfrac{mg(\cos \thetra- \sin \theta)}{2}


also Rmgcosθ=mθ˙2aR=mg(sinθ+2cosθ1) and F=mg(cosθ+sinθ)2\text{also }R-mg \cos \theta=m \dot{\theta}^2a \Rightarrow R=mg(\sin \theta+2 \cos \theta-1) \text{ and } F= \dfrac{mg(\cos \theta+ \sin\theta)}{2}
 so when θ=60,R=mg32 and F=12mg(1+32)\text{ so when } \theta=60^\circ,R=mg \dfrac{\sqrt3}{2} \text{ and }F=\dfrac{1}{2}mg \left( \dfrac{1+\sqrt3}{2} \right)
Particle is about to slip if F>μR1+32>μ3μ<1+323=3+36 \text{Particle is about to slip if }F> \mu R \Rightarrow \dfrac{1+\sqrt3}{2}>\mu \sqrt3 \Rightarrow \mu< \dfrac{1+\sqrt3}{2\sqrt3}= \dfrac{3+\sqrt3}{6}
so since this is the given value of μ, it follows that particle slips when cylinder has rotated through 60\text{so since this is the given value of }\mu, \text{ it follows that particle slips when cylinder has rotated through }60^\circ
2002 STEP III question 11

By conservation of momentum and equation of restitution we have u1cosθ=v1cos(θ30) \text{By conservation of momentum and equation of restitution we have }u_1 \cos \theta=v_1 \cos(\theta-30^\circ)
 and eu1sinθ=v1sin(θ30)\text{ and } eu_1 \sin \theta=v_1 \sin(\theta-30^\circ)
so u1v1=cos(θ30)cosθ and etanθ=tan(θ30)\text{so } \dfrac{u_1}{v_1}= \dfrac{ \cos(\theta-30^\circ)}{\cos\theta} \text{ and } e\tan \theta= \tan(\theta-30^\circ)
Clearly the same equations apply at N1 so angle of incidence at each impact is the same \text{Clearly the same equations apply at }N_1 \text{ so angle of incidence at each impact is the same}
Let distances between successive impacts be d1,d2,d3 etc and the times to treavel these distances be \text{Let distances between successive impacts be }d_1,d_2,d_3 \text{ etc and the times to treavel these distances be }
t1,t2,t3 etc then t1t2=d1v1÷d2v2=d1v2d2v1 and by the sine rule d1d2=sinθsin(θ30)t_1,t_2,t_3 \text{ etc then } \dfrac{t_1}{t_2}= \dfrac{d_1}{v_1} \div \dfrac{d_2}{v_2}= \dfrac{d_1v_2}{d_2v_1} \text{ and by the sine rule }\dfrac{d_1}{d_2}= \dfrac{\sin \theta}{\sin(\theta-30^\circ)}
 so t1t2=sinθsin(θ30)×cosθcos(θ30) i.e. t2=sin(θ30)cos(θ30)sinθcosθt1 \text{ so } \dfrac{t_1}{t_2}= \dfrac{\sin \theta}{ \sin(\theta-30^\circ)} \times \dfrac{cos \theta}{ \cos(\theta-30^\circ)} \text{ i.e. }t_2= \dfrac{\sin(\theta-30^\circ)\cos(\theta-30^\circ)}{\sin\theta \cos\theta}t_1
so the times form a G.P. with common ratio sin(θ30)cos(θ30)sinθcosθ\text {so the times form a G.P. with common ratio } \dfrac{\sin(\theta-30^\circ)\cos(\theta-30^\circ)}{\sin\theta \cos\theta}
Hence total time is sum of a G.P. with common ratio sin(2θ60)sin2θ\text{Hence total time is sum of a G.P. with common ratio }\dfrac{\sin(2\theta-60^\circ)}{\sin{2\theta}}
so total time is finite if sin(2θ60)sin2θ<1 and clearly we must have θ>30\text {so total time is finite if }\dfrac{\sin(2\theta-60^\circ)}{\sin{2\theta}}<1 \text{ and clearly we must have }\theta>30^\circ
 Now 30<θ<6060<2θ<120 and 0<2θ60<60sin(2θ60)<32\text{ Now }30^\circ<\theta<60^\circ \Rightarrow60^\circ<2\theta<120^\circ \text{ and }0^\circ<2\theta-60^\circ<60^\circ \Rightarrow \sin(2\theta-60^\circ)< \dfrac{\sqrt3}{2}
Unparseable latex formula:

\text{ and }\sin{2\theta}> \dfrac{\sqrt3}{2} \text{ so } \dfrac{\sn(2\theta-60^\circ)}{\sin{2\theta}}<1 \text{ as required}

2002 STEP III question 12

Let A,B,C be the events H,TH and HT respectively\text{Let }A,B,C \text{ be the events } {H},{TH} \text { and } {HT} \text{ respectively}
if X is the number of tosses required then E(X)=E(XA).Pr(A)+E(XB).Pr(B)+E(XC).Pr(C)=E say\text{if }X \text{ is the number of tosses required then E}(X)=\text{E}(X|A).Pr(A)+\text{E}(X|B).Pr(B) +\text{E}(X|C).Pr(C)=E \text{ say}
after A or B, the number of tosses required is still E and Pr(A)=p,Pr(B)=p(1p),Pr(C)=(1p)2\text{after }A \text{ or }B, \text{ the number of tosses required is still }E \text { and }Pr(A)=p,Pr(B)=p(1-p),Pr(C)=(1-p)^2
hence E=p(E+1)+p(1p)(E+2)+2(1p)2 i.e. E=pE+p+pEp2E+2p2p2+24p+2p2\text{hence }E=p(E+1)+p(1-p)(E+2)+2(1-p)^2 \text{ i.e. }E=pE+p+pE-p^2E+2p-2p^2+2-4p+2p^2
E(12p+p2)=2p hence E=2p12p+p2=2p(1p)2\Rightarrow E(1-2p+p^2)=2-p \text{ hence }E= \dfrac{2-p}{1-2p+p^2}= \dfrac{2-p}{(1-p)^2}
Similarly, if W is the expected winnings we have W=p(W+1)+p(1p)(W+1)+(1p)2.0\text{Similarly, if }W\text{ is the expected winnings we have }W=p(W+1)+p(1-p)(W+1)+(1-p)^2.0
Unparseable latex formula:

\text{ i.e. } W=pW+p+pW-p^2W+p-p^2n \RightarrowW= \dfrac{2p-p^2}{1-2p+p^2}= \dfrac{2p-p^2}{(1-p)^2}


In an analogous manner, if the expected number of throws to obtain r successive tails is R\text{In an analogous manner, if the expected number of throws to obtain }r\text{ successive tails is } R
then R=p(R+1)+p(1p)(R+2)+p(1p)2(R+3)++r(1p)r\text{then }R=p(R+1)+p(1-p)(R+2)+p(1-p)^2(R+3)+\dots+r(1-p)^r
=p(R+1)+pq(R+2)+pq2(R+3)++rqr by putting 1p=q =p(R+1)+pq(R+2)+pq^2(R+3)+\dots+rq^r \text { by putting }1-p=q
=pR(1+q+q2++qr1)+p+2pq+3pq2++rpqr1+rqr=pR(1+q+q^2+\dots+q^{r-1})+p+2pq+3pq^2+\dots+rpq^{r-1}+rq^r
=pR(1qr)1q+p(1+2q+3q2++rqr1)+rqr=pR(1qr)1q+p[t=1rtqt1]+rqr= \dfrac{pR(1-q^r)}{1-q}+p(1+2q+3q^2+\dots+rq^{r-1})+rq^r= \dfrac{pR(1-q^r)}{1-q}+p\left[ \displaystyle \sum_{t=1}^rtq^{t-1}\right]+rq^r
=pR(1qr)1q+p[ddqt=1rqt]+rqr=pR(1qr)1q+pddq(q(1qr)1q)+rqr=\dfrac{pR(1-q^r)}{1-q}+p\left[\dfrac{d}{dq} \displaystyle \sum_{t=1}^rq^t\right]+rq^r = \dfrac{pR(1-q^r)}{1-q}+p\dfrac{d}{dq}\left(\dfrac{q(1-q^r)}{1-q}\right)+rq^r
=RRqr+p(1q)[1(r+1)r]+pq(1qr)(1q)2+rqrR=(1q)[1(r+1)qr]+q(1qr)+rqr(1q)qr(1q)=R-Rq^r+\dfrac{p(1-q)[1-(r+1)^r]+pq(1-q^r)}{(1-q)^2}+rq^r \Rightarrow R= \dfrac{(1-q)[1-(r+1)q^r]+q(1-q^r)+rq^r(1-q)}{q^r(1-q)}
=1q(r+1)qr+q(r+1)qr+qqr+1+rqrrqr+1pqr=1qrpqr as required = \dfrac{1-q-(r+1)q^r+q(r+1)q^r+q-q^{r+1}+rq^r-rq^{r+1}}{pq^r}=\dfrac{1-q^r}{pq^r} \text{ as required}
(edited 11 years ago)
2002 STEP III question 13

Unparseable latex formula:

\text{If }X_1,X_2 \text{ are independent random variables with }X_1 \sim \text{exp}(\lambda_1) \text{ and }X_2 \sim \text{exp}(\lambda_2) \terxt{ then }


Pr(X1X2)=10xλ1eλ1tdt=1[eλ1t]0x=1+eλ1x1=eλ1x Pr(X_1 \geq X_2)=1-\displaystyle \int_0^x \lambda_1\text{e}^{-\lambda_1t}dt=1-\left[-\text{e}^{-\lambda_1t}\right]_0^x=1+\text{e}^{-\lambda_1x}-1=\text{e}^{-\lambda_1x}
so Pr(X1 or X2<x)=1eλ1xeλ2x=1e(λ1+λ2)x\text{so }Pr(X_1 \text{ or }X_2<x)=1-\text{e}^{-\lambda_1x}\text{e}^{-\lambda_2x}=1-\text{e}^{-(\lambda_1+\lambda_2)x}
which is thus the cumulative probability function for X\text{which is thus the cumulative probability function for }X
hence, density function for X is ddx(1e(λ1+λ2)x)=(λ1+λ2)e(λ1+λ2)x\text{hence, density function for }X \text{ is }\dfrac{d}{dx}(1-\text{e}^{-(\lambda_1+\lambda_2)x})=( \lambda_1+\lambda_2)\text{e}^{-(\lambda_1+\lambda_2)x}
i.e. X has an exponential distribution with parameter (λ1+λ2) \text{i.e. }X \text{ has an exponential distribution with parameter }(\lambda_1+\lambda_2)
Unparseable latex formula:

\text{if }X\sim \text{e}(\lambda) \text{ then E}(X)=\displaystyle \int_0^{\infty}x\lambda\text{e}^{-\lambda x}dx=\left[-x\text{e}^{-\lambda x}\right]_0^\infty +\displaystyle \int_0^{\infty}\text{e}^{-\lambda x}dx=\left[-\dfrac{1}{\lambda}\text{e}^{-\lambda x}\right]_0^{\infre=ty}=\dfrac{1}{\lambda}


so if X1,X2 are the waitingt times for A and B respectively we have λ1=115 and λ2=130 \text{so if }X_1,X_2 \text{ are the waitingt times for A and B respectively we have }\lambda_1=\dfrac{1}{15} \text{ and }\lambda_2=\dfrac{1}{30}
The time to the next bus will be Xexp(115+130)=exp(110)\text{The time to the next bus will be }X\sim\text{exp}\left(\dfrac{1}{15}+\dfrac{1}{30}\right)=\text{exp}\left(\dfrac{1}{10}\right)
so if m is the median waiting time we require m such that \text{so if }m \text{ is the median waiting time we require }m\text{ such that }
0m110e0.1tdt=12[e0.1t]0m=0.51e0.1m=0.5 \displaystyle \int_0^m \dfrac{1}{10}\text{e}^{-0.1t}dt=\dfrac{1}{2} \Rightarrow \left[-\text{e}^{-0.1t}\right]_0^m=0.5\Rightarrow1-\text{e}^{-0.1m}=0.5
so e0.1m=0.50.1m=ln2m=10ln2=6.937 minutes\text{so e}^{-0.1m}=0.5 \Rightarrow0.1m=\ln2 \Rightarrow m=10\ln2=6.93\approx7 \text{ minutes}
2002 STEPIII question 14

I think this will complete the 2002 solutions

Var(X+Y)=E(X+Y)2(E(X+Y))2=E(X+Y)2(E(X))22E(X)E(Y)(E(Y))2 \text{Var}(X+Y)=\text{E}(X+Y)^2-(\text{E}(X+Y))^2=\text{E}(X+Y)^2-(\text{E}(X))^2-2\text{E}(X)\text{E}(Y)-(\text{E}(Y))^2
Unparseable latex formula:

=\text{E}(X^2)+2\text{E}(XY)+ \text{E}(Y^2)-2\text{E}(X)\text{E}(Y)-(\ytext{E}(X))^2-(\text{E}(Y))^2


Unparseable latex formula:

=\text{E}(X^2)-(\text{E}(X))^2+2\text{E}(XY)-2\text{E}(X)\text{E}(Y)+ \text{}E}(Y^2)-(\text{E}(Y))^2


=Var(X)+2Cov(X,Y)+Var(Y)=\text{Var}(X)+2\text{Cov}(X,Y)+\text{Var}(Y)
(i)W+L+D=M a constant, hence W+L+D has variance 0(i) W+L+D=M \text{ a constant, hence }W+L+D \text{ has variance }0
(ii)In each game the probability of a win or a loss is 23 independently of any other game (ii) \text{In each game the probability of a win or a loss is } \dfrac{2}{3} \text{ independently of any other game}
hence W+L has the binomial distribution B(m,23)\text {hence }W+L \text{ has the binomial distribution }B\left(m,\dfrac{2}{3}\right)
WB(m,23) so Var(W)=29m and similarly Var(L)=29mW \sim B\left(m,\dfrac{2}{3}\right) \text{ so Var}(W)=\dfrac{2}{9}m \text{ and similarly Var}(L)= \dfrac{2}{9}m
hence, Cov(W,L)=12(29m29m29m)=19m so Cov(W,L)Var(W)Var(L)=19m481m2=12\text{hence, Cov}(W,L)= \dfrac{1}{2}\left(\dfrac{2}{9}m-\dfrac{2}{9}m-\dfrac{2}{9}m\right)=-\dfrac{1}{9}m \text{ so } \dfrac{ \text{Cov}(W,L)}{ \sqrt{\text{Var}(W) \text{Var}(L)}}= \dfrac{-\frac{1}{9}m}{\sqrt{\frac{4}{81}m^2}}=-\dfrac{1}{2}
Reply 148
Original post by toasted-lion
Question 5, I'll pick up where Dadeymi left off:

(b1)(ab2+(a1)b+(a1))=0 (b-1)\left(ab^2 + (a-1)b +(a-1)\right)=0

Now, a1a    k11a    b1 a_1 \not= a \implies k \not= \frac{1}{1-a} \implies b \not= 1

So (ab2+(a1)b+(a1))=0 \left(ab^2 + (a-1)b +(a-1)\right)=0

    (b+a12a)2=1aaa22a+14a2=5a2+6a14a2 \implies \left( b + \frac{a-1}{2a} \right)^2 = \frac{1-a}{a} - \frac{a^2 - 2a +1}{4a^2} = \frac{-5a^2 + 6a - 1}{4a^2}

    b=1a2a±5a2+6a12a \implies b = \frac{1-a}{2a} \pm \frac{\sqrt{-5a^2 +6a - 1}}{2a}

    k=12a±5a2+6a12a(1a) \implies k = \frac{1}{2a} \pm \frac{\sqrt{-5a^2 +6a - 1}}{2a(1-a)}




I think it should be

    (b+a12a)2=1aa+a22a+14a2=3a2+2a+14a2 \implies \left( b + \frac{a-1}{2a} \right)^2 = \frac{1-a}{a} + \frac{a^2 - 2a +1}{4a^2} = \frac{-3a^2 + 2a + 1}{4a^2}


    b=1a2a±3a2+2a+12a \implies b = \frac{1-a}{2a} \pm \frac{\sqrt{-3a^2 +2a + 1}}{2a}

    k=12a±3a2+2a+12a(1a) \implies k = \frac{1}{2a} \pm \frac{\sqrt{-3a^2 +2a + 1}}{2a(1-a)}
Original post by klausw
I think it should be

    (b+a12a)2=1aa+a22a+14a2=3a2+2a+14a2 \implies \left( b + \frac{a-1}{2a} \right)^2 = \frac{1-a}{a} + \frac{a^2 - 2a +1}{4a^2} = \frac{-3a^2 + 2a + 1}{4a^2}


    b=1a2a±3a2+2a+12a \implies b = \frac{1-a}{2a} \pm \frac{\sqrt{-3a^2 +2a + 1}}{2a}

    k=12a±3a2+2a+12a(1a) \implies k = \frac{1}{2a} \pm \frac{\sqrt{-3a^2 +2a + 1}}{2a(1-a)}


Nice one Klaus from the hill near a mill :smile:.
Reply 150
Thx!!
Reply 151
Original post by Glutamic Acid
II/7: (Scary scary vectors.)

??????????



Thank you for your solution!

However I think there is a mistake in the final part:

Firstly, after the line
The second equation gives α=223λ\alpha = \dfrac{2}{2 - 3 \lambda}.
When you substitute into the third it gives not β=223λ\beta = \dfrac{2}{2 - 3 \lambda} but β=223λ\beta = \dfrac{-2}{2 - 3 \lambda}
and if you substitute these values of alpha and beta into the first equation you will find the λ\lambda terms don't cancel out. Finally you will get a root λ=2/3\lambda=2/3

But this is not correct as λ=2/3\lambda=2/3 makes α=223λ\alpha = \dfrac{2}{2 - 3 \lambda} meaningless and also if you substitute it into the second equation you get 0=2/3.

The correct "zero value" of λ\lambda should arise when you substitute α=223λ\alpha = \dfrac{2}{2 - 3 \lambda} into the third equation. Here you must have cancelled a λ\lambda from both side and this is exactly the "zero value" of λ\lambda required by last part of the question.

I don't know if I have made any stupid mistakes here and I hope someone can check my work. And if I am right, I need to say that I still don't know why the root λ=2/3\lambda=2/3 arises here.
(edited 12 years ago)
Step 2 question 2

the one where you sub w=zz1w = z - z^{-1}

followed most of the soln on here but for the second part of the question, after dividing the whole thing by z4z^{4} i ended up with the same equation
2w43w34w2+3w+22w^{4}-3w^{3}-4w^2+3w+2
and then i just guessed factors which worked to factorise it into
(w1)(w2)(2w+1)(w+1)=0(w-1)(w-2)(2w+1)(w+1)=0
and put each of the values of w into
z2wz1=0z^2-wz-1=0
but i got 8 solutions (each value of w giving a +/- value from quadratic formula.. where have i gone wrong?
Reply 153
Original post by 8inchestall
Step 2 question 2

the one where you sub w=zz1w = z - z^{-1}

followed most of the soln on here but for the second part of the question, after dividing the whole thing by z4z^{4} i ended up with the same equation
2w43w34w2+3w+22w^{4}-3w^{3}-4w^2+3w+2
and then i just guessed factors which worked to factorise it into
(w1)(w2)(2w+1)(w+1)=0(w-1)(w-2)(2w+1)(w+1)=0
and put each of the values of w into
z2wz1=0z^2-wz-1=0
but i got 8 solutions (each value of w giving a +/- value from quadratic formula.. where have i gone wrong?


Just did this question. Instead of guessing factors I used a=ww1a = w - w^{-1}

And got 2a23a=02a^{2}-3a =0

and then a(2a3)=0a(2a-3)=0

and then got to the same solutions of w as you.

And yes i got 8 solutions, should you not get 8 if the polynomial is of order 8? I need someone to confirm this.

Answers i got:

Spoiler

(edited 11 years ago)
Original post by desijut
Just did this question. Instead of guessing factors I used a=ww1a = w - w^{-1}

And got 2a23a=02a^{2}-3a =0

and then a(2a3)=0a(2a-3)=0

and then got to the same solutions of w as you.

And yes i got 8 solutions, should you not get 8 if the polynomial is of order 8? I need someone to confirm this.

Answers i got:

Spoiler



i got the same solutions as you except for this one:

Spoiler

Reply 155
Original post by 8inchestall
i got the same solutions as you except for this one:

Spoiler



Yes, my bad, copied it down wrong, i got that too
Reply 156
Original post by SimonM
STEP III, Question 1

Spoiler



Just a typo

π[(lnx)2x2lnxx2x]1a=\displaystyle \pi \left [ - \frac{(\ln x)^2}{x} - \frac{2 \ln x}{x} - \frac{2}{x} \right ]_1^a =

π(2(lna)2a2lnaa2a)\displaystyle \pi \left ( 2 - \frac{(\ln a)^2}{a} - \frac{2 \ln a}{a} - \frac{2}{a} \right )

As a a \to \infty, the volume tends to 2π 2 \pi
(edited 11 years ago)
Reply 157
Original post by Dadeyemi
Some more;

Did these quite a while ago I'm afraid some may be partial solutions.


Agree with most of the III Q4 solution here but for the final bit the only solutions I get is (0, 0), (-1, 0), and(0, 1), any one any comments?
Original post by klausw
Agree with most of the III Q4 solution here but for the final bit the only solutions I get is (0, 0), (-1, 0), and(0, 1), any one any comments?


They are correct (assuming you've written it as y^3 - x^3 = y^2 + x^2 and your solutions are of the format (x,y)). But surely you can see that (1, -1) (and vice versa) is also a solution. Even if you don't see where it comes from you can see that it works.

You don't really need much confirmation from other people. Sub it in, if it works then it's a solution.
Reply 159
Original post by hassi94
They are correct (assuming you've written it as y^3 - x^3 = y^2 + x^2 and your solutions are of the format (x,y)). But surely you can see that (1, -1) (and vice versa) is also a solution. Even if you don't see where it comes from you can see that it works.

You don't really need much confirmation from other people. Sub it in, if it works then it's a solution.


You are right, I forget the (1, -1)solution. Thx!

Quick Reply

Latest

Trending

Trending