The Student Room Group

STEP maths I, II, III 1991 solutions

Scroll to see replies

insparato
I think the problem is, the head could melt slower or faster than the body, which means you could reach half the initial height without the head or body necessarily being exactly half the respective radius.
Exactly.

When i attempted this question, this is what plagued me... I don't think you can assume that the two spheres are going to amount to half the initial height and be half the initial radii.
Form a differential equation for R as a function of time. Solve it for both spheres. Add the answers to get a formula for height as a function of time. Etc...
insparato
I think the problem is, the head could melt slower or faster than the body, which means you could reach half the initial height without the head or body necessarily being exactly half the respective radius.

Ah, of course! Thanks, this should set me off
dVUdt=k16πR2=k16π(3VU4π)23\frac{dV_U}{dt}=k16\pi R^2=k16\pi(\frac{3V_U}{4\pi})^{\frac{2}{3}} and
dVLdt=k36πR2=k36π(3VL4π)23\frac{dV_L}{dt}=k36\pi R^2=k36\pi(\frac{3V_L}{4\pi})^{\frac{2}{3}}
Separating variables dt=116kπ(3VU4π)23dVUt=14k(VU4π)13+c1=14k(R33)13+c1=14k33R+c1\int dt=\int \frac{1}{16k\pi} (\frac{3V_U}{4\pi})^{ -\frac{2}{3}}dV_U \Rightarrow t=\frac{1}{4k}(\frac{V_U}{4\pi})^{\frac{1}{3}}+c_1= \frac{1}{4k}(\frac{R^3}{3})^{\frac{1}{3}}+c_1= \frac{1}{4k \sqrt[3]{3}}R+c_1
Separating variables on the other one dt=136kπ(3VL4π)23dVLt=19k(3VL4π)13+c2=19kR+c2\int dt=\int \frac{1}{36k\pi}(\frac{3V_L}{4\pi})^{-\frac{2}{3}}dV_L \Rightarrow t=\frac{1}{9k}(\frac{3V_L}{4\pi})^{\frac{1}{3}}+c_2=\frac{1}{9k}R+c_2

What do I do with the constants now? They're bugging me.

2×4k33(tc1)2\times4k\sqrt[3]{3}(t-c_1) is the diameter (height) of the upper sphere and 3×9k(tc2)3\times9k(t-c_2) is the diameter of the lower sphere. So the height is h(t)=27k(tc2)+8k33(tc1)h(t)=27k(t-c_2)+8k\sqrt[3]{3}(t-c_1)

So 0.5=h(t) but don't see how this helps. I'm giving up, I have never been able to do rates of change:/
I'd do something like:

Consider the rate of evaporation of a sphere of radius r, volume v, surface area s.

vr3v \varpropto r^3

So dvdt3r2drdtr2drdt\frac{dv}{dt} \varpropto 3r^2 \frac{dr}{dt} \varpropto r^2 \frac{dr}{dt}

And sr2,dvdtss \varpropto r^2, \frac{dv}{dt} \varpropto -s

So r2drdtr2r^2 \frac{dr}{dt} \varpropto -r^2, so drdt=k\frac{dr}{dt} = -k for some constant k.

Subbing in for the initial values, we get Ru(t)=2Rkt,Rl(t)=3RktR_u(t) = 2R-kt, R_l(t)=3R-kt.

Now find kt when R_u+R_l = 5R/2, etc...
DFranklin
I'd do something like:

Consider the rate of evaporation of a sphere of radius r, volume v, surface area s.

vr3v \varpropto r^3

So dvdt3r2drdtr2drdt\frac{dv}{dt} \varpropto 3r^2 \frac{dr}{dt} \varpropto r^2 \frac{dr}{dt}

And sr2,dvdtss \varpropto r^2, \frac{dv}{dt} \varpropto -s

So r2drdtr2r^2 \frac{dr}{dt} \varpropto -r^2, so drdt=k\frac{dr}{dt} = -k for some constant k.

Subbing in for the initial values, we get Ru(t)=2Rkt,Rl(t)=3RktR_u(t) = 2R-kt, R_l(t)=3R-kt.

Now find kt when R_u+R_l = 5R/2, etc...


This question is number 7 in Advanced Problems in Mathematics

II/6:

STEP II Q16

Part 1a


Part 1b


2 Part

On the last part of question 15 of STEP II I got d(m+1)6m[2N(m1)+3m] \frac{d(m+1)}{6m}[2N(m-1) + 3m] instead of d(m1)6m[2N(m+1)+3m] \frac{d(m-1)}{6m}[2N(m+1) + 3m] . Did anybody else get this? What are the chances they made a typo? I may type up my solution in a bit, but I just typed up 16 and I'm latexed out.
justinsh
I may have done mistakes but here it goes:

ln(1+x+x2+x3)\ln(1+x+x^2+x^3)\\
=ln(1+x)+ln(1+x2)=\ln(1+x)+\ln(1+x^2)\\
=(x12x2+13x3+...+(1)n+1nxn)+(x212x4+13x6+...+(1)n+1nx2n)=(x-\frac{1}{2}x^2+\frac{1}{3}x^3+...+\frac{(-1)^{n+1}}{n}x^n)+(x^2-\frac{1}{2}x^4+\frac{1}{3}x^6+...+\frac{(-1)^{n+1}}{n}x^{2n})\\
=x+12x2+13x334x4+...+[(1)n+1n12n]x2n+x2n+12n+1=x+\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{3}{4}x^4+...+\left[\frac{(-1)^{n+1}}{n}-\frac{1}{2n}\right]x^{2n}+\frac{x^{2n+1}}{2n+1}


In my personal opinion, both solutions to STEP III Q1 part b on here fail to find a general term (although this second one is quite nice with two fairly simple general terms), so I am going to post the way I did it, which is quite similar to the above method except that I actually put a general term, rather than a set of general terms. I don't know whether they expect you to do this, but before looking at these I presumed you had to. Anyway, here goes:

ln(1+x+x2+x3)=ln(1+x)+ln(1+x2)=(x12x2+13x3+...+(1)n+1nxn+...)+(x212x4+13x6+...+(1)n+1nx2n+...)=(x12x2+13x3+...+(1)n+1nxn+...)+(x212x4+13x6+...+(1)n2+1n/21+(1)n2xn+...)=x+12x2+13x334x4+15x5+...+[(1)n+1n+(1)n2+1n(1+(1)n)]xn+...ln(1+x+x^2+x^3) = ln(1+x)+ln(1+x^2) \\ \\ = (x-\frac{1}{2}x^2+\frac{1}{3}x^3+...+\frac{(-1)^{n+1}}{n}x^n+...)+(x^2-\frac{1}{2}x^4+\frac{1}{3}x^6+...+\frac{(-1)^{n+1}}{n}x^{2n}+...) \\ \\ = (x-\frac{1}{2}x^2+\frac{1}{3}x^3+...+\frac{(-1)^{n+1}}{n}x^n+...)+(x^2-\frac{1}{2}x^4+\frac{1}{3}x^6+...+\frac{(-1)^{\frac{n}{2}+1}}{n/2}\frac{1+(-1)^n}{2}x^{n}+...) \\ \\ = x+\frac{1}{2}x^2+\frac{1}{3}x^3-\frac{3}{4}x^4+\frac{1}{5}x^5+...+\big[\frac{(-1)^{n+1}}{n}+ \frac{(-1)^{\frac{n}{2}+1}}{n}(1+(-1)^n)\big]x^n+...

It's just that this question would be too easy without this, I think that what they're testing is your ability to think of a way to merge the xn and x2n terms, and finding a fairly simple function that returns 1 for even n and 0 for odd n.
Rabite
I should hope not. Not sure what I've done to make someone want to neg me though. Guess it's because I sound like a moron or something. Oh wait, I am a moron...


Anyway - I did III Q3. Thanks to Khai for pointing out my stupid errors. :p:
I updated the attachment.

Also, has anyone done the one in STEP III about some particle and two observers? Q4 I think it was...I thought I had the answer, but the direction vector has a 22 in it, so I'm guessing it's wrong.


1. There is a typo early on, you put 11 instead of 1.
2. No minimum at (1, -4) of any sort.
3. But there is a minimum at (2, -5), which is also necessary for the graph.
4. In the last part, you are defining f-1(x) so the x we are talking about is a different x to before if that makes sense, ie it is what was on the y-axis before not the x-axis. So your table thing doesn't really make sense.
5. If we ignore point 4, the right-most box is wrong anyway, because the positive root is only valid to the right of 2.

So in the last part you need to consider x<5,5x4,4x1,1x4,x4x<-5,-5 \leq x \leq -4, -4 \leq x \leq 1, 1 \leq x \leq 4, x \geq 4 . The first is undefined, all the others have two possibilities (one of which is the same for all four). It's seriously boring stuff. This question is not particularly challenging, but loads of cases to consider, and loads of room for little errors.
STEP III Q16

1 Part


2 Part


3 Part


4 Part


5 Part

Woooooooo! This has taken me almost all day and I've finally done it! I'm almost certain the answer is right as it works for a=2 and a=3, and everything follows nicely.
This alternative to III/1 part (c) is quite cute.

exln(1+x)=(1+x)x=1+x2+x(x1)2!x2+x(x1)(x2)3!x3+...=1+x2x32+5x46+...e^{x \ln(1+x)} = (1+x)^x = 1 + x^2 + \dfrac{x(x-1)}{2!}x^2 + \dfrac{x(x-1)(x-2)}{3!}x^3 + ... = 1 + x^2 - \dfrac{x^3}{2} + \dfrac{5x^4}{6} + ... from the binomial expansion.
Reply 192
Original post by Rabite
I should hope not. Not sure what I've done to make someone want to neg me though. Guess it's because I sound like a moron or something. Oh wait, I am a moron...


Anyway - I did III Q3. Thanks to Khai for pointing out my stupid errors. :p:
I updated the attachment.

Also, has anyone done the one in STEP III about some particle and two observers? Q4 I think it was...I thought I had the answer, but the direction vector has a 22 in it, so I'm guessing it's wrong.


Hi there just wanted to point out one final thing i noticed when doing this question about the inverse functions is you have to check the functions are still valid in the intervals you gave them:
For instance for -1<x<0
x13 \sqrt\frac{x-1}{3}
is undefined
Also, in the interval x<-1
2x+5 2- \sqrt{x+5}
is undefined once x<-5 so the interval should be -5<x<-1
and the inverse functions are undefined for the intervals -1<x<0 and x<-5
I think these solve 1991 Step 3 Q4 and Q9
STEP 1991 Paper II question 9

Closure (ab0c)(xy0z)=(axay+bz0cz) \text {Closure } \begin{pmatrix}a&b\\0&c \end{pmatrix}\begin{pmatrix}x & y \\ 0 & z \end{pmatrix}= \begin{pmatrix}ax&ay+bz\\0&cz \end{pmatrix}
Associativity may be assumed \text{Associativity may be assumed}
(1001) is an obvious identity element \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ is an obvious identity element}
A=(ab0c)    A1=1ac(cb0a) and ac0     existence of inverses A= \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \implies A^{-1}= \dfrac {1}{ac} \begin{pmatrix}c & -b \\ 0 & a \end{pmatrix} \text{ and }ac\not=0 \implies \text{ existence of inverses}
The order of G is the number of its elements \text{The order of G is the number of its elements}
a and c can each take 4 values, 1,2,3, or 4 whilst b can take 5, 0,1,2,3, or 4 a \text{ and }c \text{ can each take 4 values, 1,2,3, or 4 whilst }b \text{ can take 5, 0,1,2,3, or 4}
so there are 4×4×5=80 distinct elements so the order of the group is 80 \text{so there are }4 \times 4 \times 5=80 \text{ distinct elements so the order of the group is }80
G is not commutative, (xy0z)(ab0c)=(axbx+cy0cz) and bx+cy need not be the same as ay+bz \text{G is not commutative, } \begin{pmatrix} x & y \\ 0 & z \end{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}= \begin{pmatrix} ax & bx+cy \\ 0 & cz \end{pmatrix} \text{ and } bx+cy \text { need not be the same as }ay+bz
(1001) is the only element of order 1, if (ab0c) is an element of order 2 then \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ is the only element of order 1, if } \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \text{ is an element of order 2 then}
(ab0c)(ab0c)=(a2ab+bc0c)=(1001)    a2=c2=1 and b(a+c)=0 \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}= \begin{pmatrix} a2 & ab+bc \\ 0 & c \end{pmatrix}= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\implies a^2 = c^2 =1 \text{ and } b(a+c)=0
possibilities are b=0,a=±1,c=±1, or a+c=0    a=1,c=1,b=1,2,3 or 4 \text{possibilities are } b=0,a=\pm 1,c=\pm 1, \text{ or } a+c=0 \implies a=1, c=-1,b=1,2,3 \text{ or }4
or a=1,c=1,b=1,2,3 or 4 giving a total of 12 elements \text{or }a=-1,c=1,b=1,2,3 \text{ or }4 \text { giving a total of 12 elements}
so there are 13 elements of order 1 or 2 hence this subset cannot be a subgroup since 13 is not a factor of 80 \text{so there are 13 elements of order 1 or 2 hence this subset cannot be a subgroup since 13 is not a factor of 80}
STEP 1991 paper II question 10 \text {STEP 1991 paper II question 10}

An absolute swine to Latex but here goes

Let the sun be S, the pole AB and the shadow AP with origin O \text{Let the sun be S, the pole AB and the shadow AP with origin O}
Unparseable latex formula:

\mathbf {OS} = \begin{pmatrix} R \cos \theta \\ R \sin \theta \\ 0 \end{pmatrix}, \mathbf {OB}= \begin{pmatrix} 0 \\ b \cos \phi \\ b \sin \phi \end{pmatrix} \text{ so } \mathbf {SB} = \begin{pmatrix} -R \cos \theta \\ b \cos \phi-R \sin \theta \\ b \sin \phi \end{pmatrix}}


horizontal plane through A has equation (cosϕ)y+(sinϕ)z=a \text{horizontal plane through A has equation } (\cos \phi )y+( \sin \phi)z=a
Unparseable latex formula:

\text{so, taking equation of SB as }\mathbf r= \begin{pmatrix} 0 \\ b \cos \phi \\ b \sin \phi \end{pmatrix}+ \lambda \begin{pmatrix}-R \cos \theta \\ b \cos \phi-R \sin \theta \\ b \sin \phi \end{pmatrix}}


P is the point where cosϕ(bcosϕ+λ(bcosϕRsinθ))+bsin2ϕ+λbsin2ϕ=a \text{P is the point where } \cos \phi (b \cos \phi + \lambda( b \cos \phi - R \sin \theta ))+b \sin^2 \phi + \lambda b \sin^2 \phi=a
    b+λbλRsinθcosϕ=a    λ=baRsinθcosϕb=hRsinθcosϕb \implies b+ \lambda b-\lambda R \sin \theta \cos \phi=a \implies \lambda= \dfrac{b-a}{R \sin \theta \cos \phi-b}= \dfrac{h} {R \sin \theta \cos \phi -b}
OP=(0bcosϕbsinϕ)+(hRsinθcosϕb)(RcosθbcosϕRsinθbsinϕ) \mathbf{OP}= \begin{pmatrix} 0 \\ b \cos \phi \\ b \sin \phi \end{pmatrix}+ \left(\dfrac{h}{R \sin \theta \cos \phi -b}\right) \begin{pmatrix} -R \cos \theta \\ b \cos \phi - R \sin \theta \\ b \sin \phi \end{pmatrix}
and so AP=(0bcosϕbsinϕ)+(hRsinθcosϕb)(RcosθbcosϕRsinθbsinϕ)(0acosϕasinϕ) \text {and so } \mathbf {AP}= \begin{pmatrix} 0 \\ b \cos \phi \\ b \sin \phi \end{pmatrix} +\left( \dfrac{h}{R \sin \theta \cos \phi -b}\right) \begin{pmatrix} -R \cos \theta \\ b \cos \phi - R \sin \theta \\ b \sin \phi \end{pmatrix}- \begin{pmatrix} 0 \\ a \cos \phi \\ a \sin \phi \end {pmatrix}
=1Rsinθcosϕb(hRcosθbcosϕ(Rsinθcosϕb)+bhcosϕhRsinθacosϕ(Rsinθcosϕb)bsinϕ(Rsinθcosϕb)+bhsinϕasinϕ(Rsinθcosϕb)) = \dfrac{1}{R \sin \theta \cos \phi-b} \begin{pmatrix} -hR \cos \theta \\ b \cos \phi(R \sin \theta \cos \phi -b)+bh \cos \phi - hR \sin \theta - a \cos \phi (R \sin \theta \cos \phi -b) \\b \sin \phi (R \sin \theta \cos \phi -b)+bh \sin \phi-a \sin \phi (R \sin \theta \cos \phi -b) \end{pmatrix}
=1Rsinθcosϕb(hRcosθbRsinθcos2ϕb2cosϕ+bhcosϕhRsinθaRsinθcos2ϕ+abcosϕbRsinθsinϕcosϕb2sinϕ+bhsinϕaRsinϕsinθcosϕ+absinϕ) = \dfrac{1}{R \sin \theta \cos \phi-b} \begin{pmatrix}-hR \cos \theta \\ bR\sin \theta \cos^2 \phi -b^2 \cos \phi+bh \cos \phi - hR \sin \theta -aR\sin \theta \cos^2 \phi +ab \cos \phi \\ bRsin \theta \sin \phi \cos \phi -b^2 \sin \phi+bh \sin \phi -aR\sin \phi \sin \theta \cos \phi +ab \sin \phi \end{pmatrix}
=1Rsinθcosϕb(hRcosθhRsinθcos2ϕb2cosϕ+(b2ab)cosϕhRsinθ+abcosϕhRsinθsinϕcosϕabsinϕ+absinϕ) =\dfrac{1}{R \sin \theta \cos \phi-b} \begin{pmatrix}-hR \cos \theta \\ hR\sin \theta \cos^2 \phi -b^2 \cos \phi+(b^2-ab) \cos \phi - hR \sin \theta +ab \cos \phi \\ hRsin \theta \sin \phi \cos \phi -ab \sin \phi+ab \sin \phi \end{pmatrix}
=1Rsinθcosϕb(hRcosθhRsinθcos2ϕhRsinθhRsinθsinϕcosϕ) =\dfrac{1}{R \sin \theta \cos \phi-b} \begin{pmatrix}-hR \cos \theta \\ hR\sin \theta \cos^2 \phi - hR \sin \theta \\ hRsin \theta \sin \phi \cos \phi \end{pmatrix}
=RhRsinθcosϕb(cosθsinθsin2ϕsinθsinϕcosϕ) = \dfrac {Rh}{R \sin \theta \cos \phi-b} \begin{pmatrix}- \cos \theta \\ -\sin \theta \sin^2 \phi \\ sin \theta \sin \phi \cos \phi \end{pmatrix}
STEP 1991 paper II question 12 \text{STEP 1991 paper II question 12}

When hanging in equilibrium we have mg=λca \text{When hanging in equilibrium we have }mg= \dfrac{\lambda c}{a}
At time t,mg=λ(c+xbsinpt)a=md2xdt2    d2xdt2=gc(xbsinpt)=n2(xbsinpt) as required \text {At time }t, mg= \dfrac{\lambda (c+x-b \sin pt)}{a}=m \dfrac{ \text{d}^2x}{ \text{d}t^2} \implies \dfrac{ \text{d}^2x}{ \text{d}t^2}=- \dfrac {g}{c}(x-b \sin pt)=n^2(x-b \sin pt) \text { as required}
Unparseable latex formula:

\text{rearranging, }\dfrac{ \text{d}^2x}{ \text{d}t^2}+n^2x=n^2 \sin pt \text{ which has C.F. } A \cos nt+B \sin nt \text { and a P.I. } x=C \sin pt}


hence Cp2sinpt+Cn2sinpt=bn2sinpt    C=bn2n2p2 \text {hence }-Cp^2 \sin pt+Cn^2 \sin pt=bn^2 \sin pt \implies C= \dfrac{bn^2}{n^2-p^2}
so x=Acosnt+Bsinnt+bn2n2p2sinpt    d2xdt2=n2Acosntn2Bsinntbn2p2n2p2sinpt \text {so }x=A \cos nt+B \sin nt+ \dfrac{bn^2}{n^2-p^2} \sin pt \implies \dfrac{ \text{d}^2x}{ \text{d}t^2}=-n^2A \cos nt-n^2 B \sin nt- \dfrac{bn^2p^2}{n^2-p^2} \sin pt
so n2Acosntn2Bsinntbn2p2n2p2sinpt+Acosnt+Bsinnt+bn2n2p2sinpt=bsinpt \text{so }-n^2A \cos nt-n^2 B \sin nt- \dfrac {bn^2p^2}{n^2-p^2} \sin pt+A \cos nt + B \sin nt+ \dfrac{bn^2}{n^2-p^2} \sin pt=b \sin pt
hence, n2A+A=0    A=0 and n2Bbn2p2n2p2+B+bn2n2p2=b \text{hence, }-n^2A+A=0 \implies A=0 \text{ and }-n^2B- \dfrac{bn^2p^2}{n^2-p^2}+B+ \dfrac{bn^2}{n^2-p^2}=b
i.e. B(1n2)+bn2n2p2(1p2)=b    B=bbn2n2p2(1p2)1n2=b(n2p2)bn2+bn2p2(1n2)(n2p2)=bp2(n21)(1n2)(n2p2) \text{i.e. }B(1-n^2)+ \dfrac{bn^2}{n^2-p^2}(1-p^2)=b \implies B= \dfrac{b- \frac{bn^2}{n^2-p^2}(1-p^2)}{1-n^2}= \dfrac{b(n^2-p^2)-bn^2+bn^2p^2}{(1-n^2)(n^2-p^2)}= \dfrac{bp^2(n^2-1)}{(1-n^2)(n^2-p^2)}
so solution is x=bp2n2p2sinnt+bn2n2p2sinpt=bnn2p2(nsinptpsinnt) \text{so solution is }x=- \dfrac{bp^2}{n^2-p^2} \sin nt+ \dfrac{bn^2}{n^2-p^2} \sin pt= \dfrac{bn}{n^2-p^2}(n \sin pt-p \sin nt)
The condition 0<p<n is required as otherwise the initial movement of the particle is upwards \text{The condition }0<p<n \text{ is required as otherwise the initial movement of the particle is upwards}
which is clearly impossible \text{which is clearly impossible}
String remains taut throughout the motion if xbsinpt>c \text{String remains taut throughout the motion if }x-b \sin pt>-c
i.e. c+bnn2p2(nsinptpsinnt)>bsinpt    cn2cp2+bn2sinptbnpsinnt>bn2sinptbp2sinpt \text{i.e. }c+ \dfrac{bn}{n^2-p^2}(n \sin pt-p \sin nt)>b \sin pt \implies cn^2-cp^2+bn^2 \sin pt-bnp \sin nt > bn^2 \sin pt-bp^2 \sin pt
    cn2cp2bnpsinnt+bp2sinpt>0 but sinnt<sinpt \implies cn^2-cp^2-bnp \sin nt+bp^2 \sin pt>0 \text { but } \sin nt< \sin pt
so cn2cp2+(bnp+bp2)sinpt>0    c(n2p2)+bp(n+p)sinpt>0    c(np)+bpsinpt>0 \text{so } cn^2-cp^2+(bnp+bp^2) \sin pt>0 \implies c(n^2-p^2)+bp(n+p) \sin pt>0 \implies c(n-p)+bp \sin pt>0
    sinpt>c(pn)bp which is certainly true if c(pn)bp<1    bp<c(np) \implies \sin pt> \dfrac{c(p-n)}{bp} \text { which is certainly true if } \dfrac{c(p-n)}{bp}<-1 \implies bp<c(n-p)
(edited 12 years ago)
STEP 1991 Paper II question 13 \text{STEP 1991 Paper II question 13}

For particle we have (1) Ramgsinθ=amxθ¨ \text {For particle we have (1) } R-amg \sin \theta =amx \ddot \theta
 and (2) Famgcosθ=amxθ˙2 \text{ and (2) }F-amg \cos \theta=amx \dot \theta^2
For rod, we have (3) mk2θ¨=Rxdmgsinθ \text{For rod, we have (3) }mk^2 \ddot \theta =-Rx-dmg \sin \theta
From (1) and (3) mk2θ¨+dmgsinθ=ax2θ¨amgxsinθ \text{From (1) and (3) } mk^2 \ddot \theta+dmg \sin \theta=-ax^2 \ddot \theta-amgx \sin \theta
 i.e. m(k2+ax2)θ¨=mgsinθ(ax+d)\text{ i.e. }m(k^2+ax^2) \ddot \theta=-mg \sin \theta(ax+d)
so θ¨=gsinθ(ax+d)k2+ax2    2θ˙θ¨=2gsinθ(ax+d)k2+ax2θ˙ \text{so } \ddot \theta= -\dfrac{g \sin \theta(ax+d)}{k^2+ax^2} \implies 2 \dot \theta \ddot \theta =- \dfrac{2g \sin \theta(ax+d)}{k^2+ax^2 \dot \theta}
Unparseable latex formula:

\implies \dot \theta^2= \dfrac {2g(ax+d)}{k^2+ax^2} \cos \theta}


substituting in (2) gives F=amgcosθ+2amxg(ax+d)k2+ax2cosθ \text {substituting in (2) gives }F=amg \cos \theta+ \dfrac{2amxg(ax+d)}{k^2+ax^2} \cos \theta
=amgcosθ(k2+ax2+2x(ax+d)k2+ax2) and R=amgsinθamxgsinθ(ax+d)k2+ax2 =amg \cos \theta \left( \dfrac{k^2+ax^2+2x(ax+d)}{k^2+ax^2} \right) \text { and } R=amg \sin \theta- \dfrac{amxg \sin \theta(ax+d)}{k^2+ax^2}
=amgsinθ(k2+ax2x(ax+d)k2+ax2)=amgsinθ(k2dxk2+ax2) =amg \sin \theta \left( \dfrac{k^2+ax^2-x(ax+d)}{k^2+ax^2} \right) = amg \sin \theta \left( \dfrac{k^2-dx}{k^2+ax^2}\right)
hence, μ=FR=k2+ax2+2x(ax+d)(k2dx)tanθ    μtanθ=3ax2+k2+2xdk2dx as required \text{hence, } \mu= \dfrac{F}{R}= \dfrac{k^2+ax^2+2x(ax+d)}{(k^2-dx) \tan \theta} \implies \mu \tan \theta= \dfrac{3ax^2+k^2+2xd}{k^2-dx} \text { as required}
Unparseable latex formula:

\text {(i) If }k^2=xd \text { then } \ddot \theta=- \dfrac{g \soin \theta}{x} \text { and particle moves as if it is a simple pendulum of length }x


(ii) If k2<xd then particle willm slide upwards towards O. \text{(ii) If }k^2<xd \text { then particle willm slide upwards towards }O.
1991 STEP Paper II question 14 \text{1991 STEP Paper II question 14}

Velocity vector of boat is (vcosθavvsinθ) \text{Velocity vector of boat is } \begin{pmatrix} -v \cos \theta \\ av-v \sin \theta \end{pmatrix}
Using polar coordinates, x=rcosθ,y=r sinθ \text{Using polar coordinates, }x=r \cos \theta, y=r \ sin \theta
we have dxdt=rsinθθ˙+r˙cosθdydt=rcosθθ˙+r˙sinθ \text{we have } \dfrac{ \text{d}x}{\text{d}t}=-r \sin \theta \dot \theta+ \dot r \cos \theta \dfrac{ \text{d}y}{ \text{d}t}=r \cos \theta \dot \theta+ \dot r \sin \theta
Unparseable latex formula:

\terxt{so } \tan \theta \dfrac{ \text{d}x}{ \text{d}t} + x \sec^2 \theta \dfrac{ \text{d}y}{ \text{d}t} = \dfrac{\sin \theta}{\cos \theta} (-r \sin \theta \dot \theta+ \dot r \cos \theta)+ \dffrac{r \cos \theta}{ \cos^2 \theta} \dfrac { \text{d} \theta}{ \text{d}t}=\dot r \sin \theta- \lefty( \dfrac{r \sin^2 \theta}{ \cos \theta}- \dfrac{r}{ \cos \theta} \right) \dfrac{ \text{d} \theta}{ \text{d}t}


Unparseable latex formula:

= \dot r \sin \theta+r \cos \theta \dfrac { \text{d} \thewta}{ \text{d}t}=\dfrac{ \text{d}y}{ \text{d}t}


Unparseable latex formula:

\text{so velocity vector of boat is } \begin{pmatrix} \dfrac { \text{d}x}{ \text{d}t} \\ \tan \theta \dfrac {\tyext{d}x}{ \text{d}t}+ x \sec^2 \theta \dfrac{ \text{d} \theta}{ \text{d}t} \end{pmatrix}


comparing with previous expression we have dxdt=vcosθ and tanθdxdt+xsec2θdθdt=avvsinθ \text {comparing with previous expression we have } \dfrac{ \text{d}x}{ \text{d}t}=-v \cos \theta \text{ and } \tan \theta \dfrac{ \text{d}x}{ \text{d}t}+ x \sec^2 \theta \dfrac{ \text{d} \theta}{ \text{d}t}=av-v \sin \theta
Unparseable latex formula:

\implies \dfrac{ \cos \theta}{a- \sin \theta}= \dfrac{ \frac{ \text{d}x}{ \text6{d}t}}{ \tan \theta \frac{ \text{d}x}{ \text{d}t}+ x \sec^2 \theta \frac { \text{d} \theta}{} \text{d}t}}= \dfrac{1}{ \tan \thewta+x \sec^2 \theta \frac { \text{d} \theta}{} \text{d}x}}


    dxdθ=xacosθ or adxdθ=xsecθ \implies \dfrac{ \text{d}x}{ \text{d} \theta}= \dfrac{x}{a \cos \theta} \text{ or } a \dfrac{ \text{d}x}{ \text{d} \theta}=-x \sec \theta
Unparseable latex formula:

\text{integrating we have } \int \dfrac{a}{x} \terxt{d}x=-\int \sec \theta \text{d} \theta \implies a \ln x=- \ln( \sec \theta+ \tan \theta)+C


x=h when θ=0 so C=alnh    aln(xh)=ln(1secθ+tanθ)    (xh)a=(secθ+tanθ)1 x=h \text{ when } \theta=0 \text{ so } C=a \ln h \implies a \ln \left( \dfrac{x}{h} \right) = \ln \left( \dfrac {1}{ \sec \theta+ \tan \theta} \right) \implies \left( \dfrac{x}{h} \right)^a =( \sec \theta+ \tan \theta)^{-1}
x=hes    dxdt=hesdsdt    hesdsdt=vcosθ    hescosθdsdt=v x=h \text{e}^{-s} \implies \dfrac{ \text{d}x}{ \text{d}t}=-h \text{e}^{-s} \dfrac{ \text{d}s}{ \text{d}t} \implies-h \text{e}^{-s} \dfrac{ \text{d}s}{ \text{d}t}=-v \cos \theta \implies \dfrac{h \text{e}^{-s}}{ \cos \theta} \dfrac { \text{d}s}{ \text{d}t}=v
but 1cosθ=sec2θ=1+tan2θ=1+sinh2(as)=cosh(as) \text{but } \dfrac{1}{ \cos \theta}= \sqrt{\sec^2 \theta} = \sqrt{1+ \tan^2 \theta}= \sqrt{1+ \sinh^2(as)}= \cosh(as)
hence, hescosh(as)dsdt=v as required \text{hence, }h \text{e}^{-s} \cosh(as) \dfrac { \text{d}s}{ \text{d}t} =v \text { as required}
Unparseable latex formula:

\text{integrating } t= \dfrac{h}{v} \displaystyle\int_0^\infty \text{e}^{-s} \cosh(as) \text{d}s \impliest= \dfrac{h}{2v} \displaystyle\int_0^\infty \texy{e}^{-s}( \text{e}^{as}+ \text{e}^{-as}) \text{d}s= \dfrac{h}{2v} \left[ \dfrac{ \text{e}^{-(1-a)s}}{a-1}- \dfrac{ \text{e}^{-(a+1)s}}{a+1} \right]_0^\infty


i.e. t=h2v(0(1a11a+1))=hv(1a2)=hv1(1a2)1 as required \text{i.e. } t= \dfrac{h}{2v} \left(0- \left( \dfrac{1}{a-1}- \dfrac{1}{a+1} \right) \right)= \dfrac{h}{v(1-a^2)}=hv^{-1}(1-a^2)^{-1} \text { as required}
1991 STEP Paper II question 16 \text{1991 STEP Paper II question 16}

The dam cannot overflow during the first day since it starts with spare capacity V \text{The dam cannot overflow during the first day since it starts with spare capacity }V
and starts emptying immediately \text{and starts emptying immediately}
Suppose it rains on both days, the time, in days, at which the second rainfall occurs is uniform in [1,2] \text{Suppose it rains on both days, the time, in days, at which the second rainfall occurs is uniform in } [1,2]
the amount of water drained out by then is uniform in [u,2u] \text{the amount of water drained out by then is uniform in }[u,2u]
and so is the spare capacity, hence, the dam overflows if this value is less than V \text {and so is the spare capacity, hence, the dam overflows if this value is less than }V
which happens with probability Vuu=Vu1 \text {which happens with probability } \dfrac{V-u}{u}= \dfrac{V}{u}-1
.so probability of overflow is p2(Vu1) and for a given value of Q.\text {so probability of overflow is }p^2 \left( \dfrac{V}{u}-1 \right) \text{ and for a given value of }Q
the required u satisfies p2(Vu)=Q    u=V(Q/p2)+1 \text {the required }u \text { satisfies }p^2 \left( \dfrac{V}{u} \right)=Q \implies u= \dfrac{V}{(Q/p^2)+1}
(i) For the engineers’ holiday, then only thing that matters is how often it rains. \text {(i) For the engineers' holiday, then only thing that matters is how often it rains.}
If it’s k or less, there will be no overflow. \text {If it's }k \text { or less, there will be no overflow.}
so we must choose k so that P(nk)110 where n has a B(18,13) distribution \text {so we must choose }k \text { so that P}(n \geq k) \leq \dfrac{1}{10} \text { where }n \text { has a B}\left(18, \dfrac{1}{3} \right) \text { distribution}
approximating th8is by N(6,4) we have P(nk)P(zk+0.562)0 \text {approximating th8is by N}(6,4) \text { we have P}(n \geq k) \approx \text {P} \left( z \geq \dfrac{k+0.5-6}{2} \right) \leq 0
 i.e. if k5.521.282    k5.5+2.56=8.06 so he must choose k=9 \text { i.e. if } \dfrac{k-5.5}{2} \geq 1.282 \implies k \geq 5.5+2.56=8.06 \text { so he must choose }k=9
(ii) Mean number of rainfalls is still the same, but with half the variance so we can afford to use a similar value of k \text {(ii) Mean number of rainfalls is still the same, but with half the variance so we can afford to use a similar value of }k
(edited 12 years ago)

Quick Reply

Latest

Trending

Trending