Turn on thread page Beta

I'm bored. Give me a challenging maths problem to work on. watch

Announcements
    • Very Important Poster
    Offline

    22
    ReputationRep:
    Very Important Poster
    (Original post by multiratiunculae)
    hyperbolic arctan?

    I said A-levelish
    That is A-level. FP2
    • Study Helper
    • Welcome Squad
    Offline

    18
    ReputationRep:
    Study Helper
    Welcome Squad
    (Original post by multiratiunculae)
    hyperbolic arctan?

    I said A-levelish
    I'm doing it now at A-level.....Further maths
    • Thread Starter
    Offline

    3
    ReputationRep:
    (Original post by 13 1 20 8 42)
    If so, note that the derivative of x^2 + 6x is 2x + 6 = 2(x + 3)
    I was thinking of using u-substitution: why is the derivative important?
    Offline

    20
    ReputationRep:
    X and Y go shopping. X buys 1 apple and Y buys 2 apples. How many apples all together?
    Offline

    3
    ReputationRep:
    (Original post by multiratiunculae)
    What can I deduce about f(sin(x))? If the original function was f(x)=1 for example, then f(sin(x)) has no effect. Obviously, the original function wasn't so, but what can be deduced?
    The info gives away that the first part can be done by IBP. When the first part is done, the second deduction is just an application using the same logic.
    Offline

    19
    ReputationRep:
    (Original post by multiratiunculae)
    I was thinking of using u-substitution: why is the derivative important?
    Well this is quite a standard integrating technique; you note that by the chain rule differentiating something of the form (7 - 6x - x^2)^n will give you -2n(x +3)(7 - 6x - x^2)^(n-1); all you need to do is find the right power and the right constant
    Offline

    2
    ReputationRep:
    (Original post by 13 1 20 8 42)
    Idk what is challenging for you

    Here's one that's probably too easy, prove that n^3 - n is divisible by 6 for n a natural number
    You can write it as n(n^2-1) which is the same as (n-1)n(n+1).
    (n-1)(n)(n+1) is 3 consecutive numbers multiplied together.

    Therefore, one of your numbers must be divisible by 2 and one must be divisible by 3.
    As we know any multiple of 2 multiplied by any multiple of 3 equals a multiple of 6; because 2x3=6
    You then have a third number to multiply, and whatever that number is your solution to the equation must still be divisible by 6, since a multiple of 6 times any number is still a multiple of 6.

    So you will have (multiple of 2)(multiple of 3)(multiple of 1).
    Which is the same as (multiple of 6)(multiple of 1).
    Which is the same as (multiple of 6).

    With this method you're only really proving that 3 consecutive numbers multiply into a multiple of 6.

    I hope there's a more mathematical way to do it
    Offline

    9
    ReputationRep:
    (Original post by multiratiunculae)
    A-levelish.
    here you go:
    http://www.damtp.cam.ac.uk/user/stcs...99paperIII.pdf
    Offline

    16
    ReputationRep:
    what is 9 + 10
    Offline

    16
    ReputationRep:
    (Original post by MathsAstronomy12)
    X and Y go shopping. X buys 1 apple and Y buys 2 apples. How many apples all together?
    that moment when you realise the answer is too obvious lol

    3?
    Offline

    18
    ReputationRep:
    (Original post by serah.exe)
    9+10
    Edit: o **** Ripper Phoenix said this before me.
    I could have sworn you posted that originally and I responded to the "9+10" not "0/0" wtf
    Offline

    18
    ReputationRep:
    (Original post by serah.exe)
    :ninja:
    Ur a funny ol' scallywag
    Offline

    19
    ReputationRep:
    (Original post by Jamdroid)
    You can write it as n(n^2-1) which is the same as (n-1)n(n+1).
    (n-1)(n)(n+1) is 3 consecutive numbers multiplied together.

    Therefore, one of your numbers must be divisible by 2 and one must be divisible by 3.
    As we know any multiple of 2 multiplied by any multiple of 3 equals a multiple of 6; because 2x3=6
    You then have a third number to multiply, and whatever that number is your solution to the equation must still be divisible by 6, since a multiple of 6 times any number is still a multiple of 6.

    So you will have (multiple of 2)(multiple of 3)(multiple of 1).
    Which is the same as (multiple of 6)(multiple of 1).
    Which is the same as (multiple of 6).

    With this method you're only really proving that 3 consecutive numbers multiply into a multiple of 6.

    I hope there's a more mathematical way to do it
    Yeah that's the way. I suppose asserting that the number is divisible by 2 and 3 isn't completely rigorous but it is obvious and in terms of this question seems a bit unnecessary to prove, although it can be done quite easily also.
    • Welcome Squad
    Offline

    20
    Welcome Squad
    (Original post by Awesome Genius)
    Do they even do Maths at Norwich?
    In the University of East Anglia? Yes, yes they do.
    Offline

    18
    ReputationRep:
    (Original post by serah.exe)
    #lifegoalz
    On a more serious note did u actually manage to solve

    (Original post by serah.exe)
    9+10
    Edit: o **** Ripper Phoenix said this before me.
    Offline

    16
    ReputationRep:
    Name:  IMAG0058.jpg
Views: 125
Size:  400.6 KBhow do you do 1f?
    Offline

    16
    ReputationRep:
    What about 9b, I keep on getting 1 as k but the answer is 1/2 but how? Name:  14457852692151509479030.jpg
Views: 70
Size:  402.8 KB
    Offline

    2
    ReputationRep:
    (Original post by coconut64)
    Name:  IMAG0058.jpg
Views: 125
Size:  400.6 KBhow do you do 1f?
    Use F=ma
    The key word is maximum, so you can use values 3ms-2 (acceleration) and 12000N

    Let X equal the number of people
    Using f=ma
    12000N-(300g+75g[x])=(300+75x)3

    And find X by making it the subject.

    (12000-300g-75gx)/3 = 300+75x
    (12000-300g-75gx)/3 - 300 - 75x = 0
    (12000-300g)/3 - (75gx)/3 - 300 - 75x = 0

    Multiply by 3, and switch sides around.

    225x + 75gx = 12000 - 300g - 900
    X(225+75g) = " "
    X = (12000 - 300g - 900) / (225+75g)

    And when rounding, round downwards to the nearest whole number.
    So I got 8 people, I hope that is correct!
    Offline

    16
    ReputationRep:
    (Original post by Jamdroid)
    Use F=ma
    The key word is maximum, so you can use values 3ms-2 (acceleration) and 12000N

    Let X equal the number of people
    Using f=ma
    12000N-(300g+75g[x])=(300+75x)3

    And find X by making it the subject.

    (12000-300g-75gx)/3 = 300+75x
    (12000-300g-75gx)/3 - 300 - 75x = 0
    (12000-300g)/3 - (75gx)/3 - 300 - 75x = 0

    Multiply by 3, and switch sides around.

    225x + 75gx = 12000 - 300g - 900
    X(225+75g) = " "
    X = (12000 - 300g - 900) / (225+75g)

    And when rounding, round downwards to the nearest whole number.
    So I got 8 people, I hope that is correct!
    I did something similar to yours and got 8.5 but the answer is 11 which doesn't ring any bells. also why didnt you round it to 9? Could you please do the other question I posted? Thanks
    Offline

    2
    ReputationRep:
    (Original post by coconut64)
    I did something similar to yours and got 8.5 but the answer is 11 which doesn't ring any bells. also why didnt you round it to 9? Could you please do the other question I posted? Thanks
    I hate lift questions haha

    You have to round downwards because you are using the maximum values to work out X. So the number you get, such as 8.5, is the absolute maximum number of people you can have.

    Since you can't have 8.5 people, the maximum, you can only have 8 people.
    If you have 9 people the lift will break because it can't hold that force, it can only hold 8.5.

    Assuming if 8.5 was the correct answer, of course.

    + the answer for your second question should be 1, I can't see why not.
 
 
 
Reply
Submit reply
Turn on thread page Beta
TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

Updated: November 5, 2015
Poll
Do you think parents should charge rent?

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE

Write a reply...
Reply
Hide
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.