The Student Room Group
Reply 1
ThugzMansion7
Starting with Sin(A-B) and Cos(A-B)
prove that Tan(A-B) ≡ tanA - tanB/1+tanAtanB

tan(A-B)=sin(A-B)/cos(A-B)=[sinAcosB-cosAsinB]/[cosAcosB+sinAsinB]=[tanA-tanB]/[1+tanAtanB] (dividing top and bottom by cosAcosB)
Reply 2
Gaz031
tan(A-B)=sin(A-B)/cos(A-B)=[sinAcosB-cosAsinB]/[cosAcosB+sinAsinB]=[tanA-tanB]/[1+tanAtanB] (dividing top and bottom by cosAcosB)

:confused:
Reply 3
got it
Reply 4
If Sin(A-B) = SinACosB-CosASinB
and Cos(A-B) = CosACosB+SinASinB

So Tan(A-B) = (SinACosB-CosASinB)/(CosACosB+SinASinB)


Tan(A-B) = (TanA - TanB)/(1-TanATanB) by ÷by cosAcosB


Just abit more spread out