You are Here: Home >< Maths

# Coefficients of characteristic polynomial (linear algebra) watch

1. I'm struggling with this problem:

A is an nxn square, real matrix. Let f(x) be the characteristic polynomial, write f(x) = xn - c1xn-1 + ... + (-1)rcrxn-r + ... + (-1)ncn

Show that cn-1 = det (Aii) where Aii is the (i,i) minor of A.

Similarly, what is the coefficient cr?

I have shown that c1 = trace(A) and cn = det(A).
cn-1 is the coefficient of x, so is the sum of all products involving one entry from the diagonal, would this product then be the determinant of the matrix formed by deleting the row and column that this entry is in, so Aii?

If this is true, how would I express it more rigorously?

Also I'm not sure how to generalise for cr.

### Related university courses

TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Updated: February 7, 2010
Today on TSR

### Results day under a month away

How are you feeling?

Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read the updated guidelines here

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams