Well, I think they are called 'Indentities', but I am not 100% sure.
My teacher gave us this to solve. But I keep getting stuck.
Prove,
tanh 2x = (2 tanh x) / (1 + tan h^2 x)
With the RHS side I have got as far as,
tanh 2x = (2 * (e^x - e^-x/e^x + e^-x)) / (1 + (e^2x - 2 + e^-2x/e^2x + 2 + e^-2x))
tanh 2x = (2 * (e^x - e^-x/e^x + e^-x)) / ((e^2x - 2 + e^-2x + e^2x + 2 + e^-2x/e^2x + 2 + e^-2x))
tanh 2x = (2 * (e^x - e^-x/e^x + e^-x)) / ((2e^2x + 2e^-2x /e^2x + 2 + e^-2x))
tanh 2x = (2 * (e^x - e^-x/e^x + e^-x)) / (( 2 (e^x + e^-x) /e^2x + 2 + e^-2x))
Please help,
Thanks