Turn on thread page Beta
    • Thread Starter
    Offline

    0
    ReputationRep:
    Is it possible to inegrate the derivatives of the inverse trig functions to obtain a function of x that doesn't actually include the trigonometric terms?

    For instance, the derivative of tan-1x is 1/(1+x²). Is it possible to then inegrate 1/(1+x²) using some substitution to obtain a function of x excluding tan-1x?

    Because from this you could then find the inverse function which would give you tanx in terms of x and excluding tan. Just a thought.
    Offline

    10
    ReputationRep:
    Suppose both f(x) and g(x) differentiate to give you \frac{1}{1+x^{2}}, but f(x) \not= g(x) and g(x) = \tan^{-1}(x)

    Therefore we have \frac{df}{dx} = \frac{dg}{dx} by construction. Integrate to get f(x) = g(x) + K where K is a constant. Since we know g(x) we get f(x) = \tan^{-1}(x) + K.

    Whatever expression you derive will be \tan^{-1}(x) but just with a constant added on.

    If you mean "Is there a representation of tan^{-1}(x) which doesn't actually involve tan?" then yes there is, but it involves complex logorithms, and isn't particularly nice, and as I've just proved, it will be \tan^{-1}(x) give or take a constant.

    \tan^{-1}(x) does have a rather pleasant Maclaurin series, namely

    \tan^{-1}(x) = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{7} + ...

    This gives the exceptionally elegant series for \pi if you put in x=1 as

    \frac{\pi}{4} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + ...

    Unfortunately the rate of convergence is shockingly terrible, needing thousands of terms to get only 3 or 4 decimal places.
 
 
 
Reply
Submit reply
Turn on thread page Beta
Updated: November 21, 2005

University open days

  • University of Bradford
    All faculties Undergraduate
    Wed, 21 Nov '18
  • Buckinghamshire New University
    All Faculties Postgraduate
    Wed, 21 Nov '18
  • Heriot-Watt University
    All Schools Postgraduate
    Wed, 21 Nov '18
Poll
Black Friday: Yay or Nay?
Useful resources

Make your revision easier

Maths

Maths Forum posting guidelines

Not sure where to post? Read the updated guidelines here

Equations

How to use LaTex

Writing equations the easy way

Equations

Best calculators for A level Maths

Tips on which model to get

Student revising

Study habits of A* students

Top tips from students who have already aced their exams

Study Planner

Create your own Study Planner

Never miss a deadline again

Polling station sign

Thinking about a maths degree?

Chat with other maths applicants

Can you help? Study help unanswered threads

Groups associated with this forum:

View associated groups

The Student Room, Get Revising and Marked by Teachers are trading names of The Student Room Group Ltd.

Register Number: 04666380 (England and Wales), VAT No. 806 8067 22 Registered Office: International House, Queens Road, Brighton, BN1 3XE

Write a reply...
Reply
Hide
Reputation gems: You get these gems as you gain rep from other members for making good contributions and giving helpful advice.