You are Here: Home >< Maths

# factor and remainder question watch

1. The cubic polynomial x^3 +ax^2 +bx -8 where a and b are constants has factors (x+1) and (x+2) find a and b

So i used the factor therom if (x-a) is a factor then f(a) is a factor to say that -1 and -2 are factors i then tried to do divson of polynomials but got really confused. Is this even the correct way to go about this question?
2. i would expand out (x+1)(x+2)(x-a) and simply compare coeffs (you can work out what the a is ridiculously simply). probably not the most elegant way of doing it but it'll work
3. (Original post by hazbaz)
The cubic polynomial x^3 +ax^2 +bx -8 where a and b are constants has factors (x+1) and (x+2) find a and b

So i used the factor therom if (x-a) is a factor then f(a) is a factor to say that -1 and -2 are factors i then tried to do divson of polynomials but got really confused. Is this even the correct way to go about this question?
Easy way: put -1 and -2 in to form a pair of simultaneous equations and then solve for a and b, so you will have two equations, both in terms of a and b (one that you substituted -2 into and one that you substituted -1 into).
4. Well +1, +2 and another number have to multiply to make -8. So that means the other number must be -4. So the cubic equation looks like: (x+1)(x+2)(x-4) - just expand this and compare the coefficients of each.
5. (x+1) and (x+2) are factors, which mean they divise without remainders thus, (x+1) = 0 and (x+2) = 0, so we can take form this x = -1 and x = -2.

For x = -1, -1 + a - b + 8 = 0 ---> a -b +7 = 0
For x = -2, -8 + 4a - 2b -8 = 0 ---> 4a - 2b - 16 = 0

Solve simultaneously. (Sorry if I've made any silly maths errors, but you get the jist)
6. (Original post by hazbaz)
The cubic polynomial x^3 +ax^2 +bx -8 where a and b are constants has factors (x+1) and (x+2) find a and b

So i used the factor therom if (x-a) is a factor then f(a) is a factor to say that -1 and -2 are factors i then tried to do divson of polynomials but got really confused. Is this even the correct way to go about this question?
Okay so if it has those factors , you can do it simultaneously.

Sub in x=-1 as the roots, then obtain 2 equations. As the following:
f(-1) = -1^3 +a(-1)^2 +b(-1) -8 = 0
f(-2) = -2^2 + a(-2)^2+b(-2)-8=0

Multiply it out cleanly, then move the constant to the right side to get 2 easy simultaneous equations
7. hey i made a video tutorial for this question on my blog. You can find the link in the signature. look for factor theorem question with unknowns. Hope that helps

### Related university courses

TSR Support Team

We have a brilliant team of more than 60 Support Team members looking after discussions on The Student Room, helping to make it a fun, safe and useful place to hang out.

This forum is supported by:
Updated: March 29, 2011
Today on TSR

How do you think you'll do?

### University open days

Wed, 25 Jul '18
2. University of Buckingham
Wed, 25 Jul '18
3. Bournemouth University
Wed, 1 Aug '18
Poll
Useful resources

### Maths Forum posting guidelines

Not sure where to post? Read the updated guidelines here

### How to use LaTex

Writing equations the easy way

### Study habits of A* students

Top tips from students who have already aced their exams