The Student Room Group

Rearranging fourier expansion to find solution to a series

f(x)=x+πf(x) = x+ \pi

Fourier expansion is

Unparseable latex formula:

f(x) = \pi - 2 \displaystyle\sum_{n=1}^\infty} \dfrac{(-1)^n sin(nx)}{n}



and I'm finding
Unparseable latex formula:

\displaystyle\sum_{n=0}^\infty} \dfrac{(-1)^k}{2k+1}



So at x=π2x =\dfrac{\pi}{2} we have

Unparseable latex formula:

\pi + \dfrac{\pi}{2} = \pi - 2 \displaystyle\sum_{n=1}^\infty} \dfrac{(-1)^n sin(\dfrac{n\pi}{2})}{n}



Unparseable latex formula:

\dfrac{\pi}{2} = - 2 \displaystyle\sum_{n=1}^\infty} \dfrac{(-1)^n sin(\dfrac{n\pi}{2})}{n}



But sin(nπ2)sin(\dfrac{n\pi}{2}) when n=2k+1n=2k+1 gives sin(nπ2)=1 , n1, nZ, kNsin(\dfrac{n\pi}{2}) = -1 \ , \ n \geq 1 , \ n \in \mathbb{Z} , \ k \in \mathbb{N}

Hence
Unparseable latex formula:

\dfrac{\pi}{2} = + 2 \displaystyle\sum_{n=0}^\infty} \dfrac{(-1)^{2k+1}}{2k+1}



But the issue here is that (1)2k+1=1(-1)^{2k+1} = -1 so I'm not getting the correct series. What am I doing wrong? My brain's dead
(edited 13 years ago)
When n = 2k, then sin(n*pi/2) = sin(k*pi) = 0.

When n = 2k + 1, then sin(n*pi/2) = sin((2k+1)*pi/2) = (-1)^k.
Original post by Glutamic Acid
When n = 2k, then sin(n*pi/2) = sin(k*pi) = 0.

When n = 2k + 1, then sin(n*pi/2) = sin((2k+1)*pi/2) = (-1)^k.


:facepalm2: cheers, taking a second look at the poor sine curve I drew, I now realise I need sleep

Quick Reply

Latest