The Student Room Group
Reply 1
In = int coshnx dx
= int coshx . coshn-1x dx
= coshn-1x sinhx - (n-1) int coshn-2x . sinh²x dx
= coshn-1x sinhx - (n-1) int coshn-2x . (cosh²x - 1) dx
= coshn-1x sinhx - (n-1) int coshnx dx + (n-1) int coshn-2x dx
In = coshn-1x sinhx - (n-1)In + (n-1) In-2

In (n-1+1) = coshn-1x sinhx + (n-1) In-2

n In = coshn-1x sinhx + (n-1) In-2

Edit: forgot to plug the limits in...
n In = coshn-1x sinhx]01 + (n-1) In-2
n In = coshn-11 sinh1 - coshn-10 sinh0 + (n-1) In-2
n In = coshn-11 sinh1 + (n-1) In-2
Integrate by parts with:

u = coshn-1(x) => u' = (n-1)coshn-2(x).sinh(x)

v' = cosh(x) => v = sinh(x)

In = uv - u'v
= {between 1 and 0} [coshn-1(x).sinhx] - (n-1) INT coshn-2(x).sinh2(x)

Then use sinh2(x) = cosh2(x) - 1
to get

In = {between 1 and 0} [coshn-1(x).sinhx] - (n-1) INT coshn(x) - coshn-2(x)

and hopefully you can do it from there

EDIT: or just read Yazan's post :wink: